We observed and studied the phenomenon of the redox front propagation in different polyaniline (PAni) deposited samples interfaced with liquid or solid polymeric electrolyte. The front of electrochemical conversion, in which the insulator and the conductor parts of PAni are interfaced, is studied observing the temporal evolution of the conductivity of PAni samples. The propagation of redox front was studied in electrochemically obtained thick (2 µm) and in thin (50 nm) polyaniline films, obtained using Langmuir-Blodgett (LB) method. In the configuration that we tested, the speed of the red-ox front propagation for the thin LB films was found to be 200 µm/sec opening the way for the manufacturing large neural networks, realized using PAni based memristive devices, in which the memristance can be quickly changed in the programmable manner. The prototypes of the spiking neuron connections were manufactured on the basis of lithographically developed gold contacts, bridged by electrochemically grown polyaniline and placed under polymer electrolyte layer with only one counter electrode (gate) for the whole manifold of pseudo-two-terminal memristor bridges. The spike propagation was studied in such gold-polyaniline systems. The research opens the possibility of miniature spike or rate-based neural network circuits manufacture, based on metal pads and polyaniline.

Red-Ox front propagation in polyaniline-polymer electrolyte system as a basis for spiking and rate-based neural networks and multibit ReRAM

Erokhin, Victor
Ultimo
Supervision
2023

Abstract

We observed and studied the phenomenon of the redox front propagation in different polyaniline (PAni) deposited samples interfaced with liquid or solid polymeric electrolyte. The front of electrochemical conversion, in which the insulator and the conductor parts of PAni are interfaced, is studied observing the temporal evolution of the conductivity of PAni samples. The propagation of redox front was studied in electrochemically obtained thick (2 µm) and in thin (50 nm) polyaniline films, obtained using Langmuir-Blodgett (LB) method. In the configuration that we tested, the speed of the red-ox front propagation for the thin LB films was found to be 200 µm/sec opening the way for the manufacturing large neural networks, realized using PAni based memristive devices, in which the memristance can be quickly changed in the programmable manner. The prototypes of the spiking neuron connections were manufactured on the basis of lithographically developed gold contacts, bridged by electrochemically grown polyaniline and placed under polymer electrolyte layer with only one counter electrode (gate) for the whole manifold of pseudo-two-terminal memristor bridges. The spike propagation was studied in such gold-polyaniline systems. The research opens the possibility of miniature spike or rate-based neural network circuits manufacture, based on metal pads and polyaniline.
2023
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Memristor, Neural network, Polyaniline, Red-ox front, Solid electrolyte, Spike
File in questo prodotto:
File Dimensione Formato  
Red-Ox front propagation in polyaniline-polymer electrolyte system as a basis for spiking and rate-based neural networks and multibit ReRAM.pdf

solo utenti autorizzati

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.03 MB
Formato Adobe PDF
4.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/520410
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact