In this paper, we present an evaluation of the influence of label selection on the performance of a Sequence-to-Sequence Transformer model in a classification task. Our study investigates whether the choice of words used to represent classification categories affects the model’s performance, and if there exists a relationship between the model’s performance and the selected words. To achieve this, we fine-tuned an Italian T5 model on topic classification using various labels. Our results indicate that the different label choices can significantly impact the model’s performance. That being said, we did not find a clear answer on how these choices affect the model performances, highlighting the need for further research in optimizing label selection.

Lost in Labels: An Ongoing Quest to Optimize Text-to-Text Label Selection for Classification

Miaschi Alessio;Michele Papucci;Felice Dell'Orletta
2023

Abstract

In this paper, we present an evaluation of the influence of label selection on the performance of a Sequence-to-Sequence Transformer model in a classification task. Our study investigates whether the choice of words used to represent classification categories affects the model’s performance, and if there exists a relationship between the model’s performance and the selected words. To achieve this, we fine-tuned an Italian T5 model on topic classification using various labels. Our results indicate that the different label choices can significantly impact the model’s performance. That being said, we did not find a clear answer on how these choices affect the model performances, highlighting the need for further research in optimizing label selection.
2023
Istituto di linguistica computazionale "Antonio Zampolli" - ILC
encoder-decoder, label selection, topic classification
File in questo prodotto:
File Dimensione Formato  
paper39.pdf

accesso aperto

Licenza: Creative commons
Dimensione 1.62 MB
Formato Adobe PDF
1.62 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/520527
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact