MgO-doped partially stabilized zirconia (MgPSZ) is a ceramic where three phases (cubic, tetragonal and monoclinic zirconia) might coexist due to non-equilibrium conditions and proper quantification of phase content is difficult. Here, a few selected compositions (in the 7–10 mol% MgO range) and firing profiles were studied in order to cover several phase compositions and microstructural features. An original attempt is made to correlate data obtained by X-ray diffraction (XRD), dilatometry (DIL) and scanning electron microscopy (SEM). Distinct software packages used in the analysis of XRD patterns of different samples confirmed the shortcomings of the assessment of phase content in sintered bodies while proper handling of DIL data provided complementary quantitative information on their phase content. The suggested procedure can be further used to obtain a subtle insight on phase development with temperature, subject of major relevance with respect to tuning of the mechano-thermal behavior of these ceramics.

A combined structural, microstructural and dilatometric analysis of MgPSZ

Tobaldi D. M.;
2018

Abstract

MgO-doped partially stabilized zirconia (MgPSZ) is a ceramic where three phases (cubic, tetragonal and monoclinic zirconia) might coexist due to non-equilibrium conditions and proper quantification of phase content is difficult. Here, a few selected compositions (in the 7–10 mol% MgO range) and firing profiles were studied in order to cover several phase compositions and microstructural features. An original attempt is made to correlate data obtained by X-ray diffraction (XRD), dilatometry (DIL) and scanning electron microscopy (SEM). Distinct software packages used in the analysis of XRD patterns of different samples confirmed the shortcomings of the assessment of phase content in sintered bodies while proper handling of DIL data provided complementary quantitative information on their phase content. The suggested procedure can be further used to obtain a subtle insight on phase development with temperature, subject of major relevance with respect to tuning of the mechano-thermal behavior of these ceramics.
2018
Istituto di Nanotecnologia - NANOTEC - Sede Lecce
MgPSZ
Microstructure
Structural characterization
Thermal expansion
Zirconia
File in questo prodotto:
File Dimensione Formato  
2018_JEurCeramSoc.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Altro tipo di licenza
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/520690
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact