By creating a sharp and dense dopant profile of phosphorus atoms buried within a silicon host, a two-dimensional electron gas is formed within the dopant region. Quantum confinement effects induced by reducing the thickness of the dopant layer, from 4.0nm to the single-layer limit, are explored using angle-resolved photoemission spectroscopy. The location of theoretically predicted, but experimentally hitherto unobserved, quantum well states known as the Δ manifold is revealed. Moreover, the number of carriers hosted within the Δ manifold is shown to be strongly affected by the confinement potential, opening the possibility to select carrier characteristics by tuning the dopant-layer thickness.
Observation and origin of the $\mathrm{\ensuremath{\Delta}}$ manifold in Si:P $\ensuremath{\delta}$ layers
Mahatha, Sanjoy K.;Curcio, Davide;
2020
Abstract
By creating a sharp and dense dopant profile of phosphorus atoms buried within a silicon host, a two-dimensional electron gas is formed within the dopant region. Quantum confinement effects induced by reducing the thickness of the dopant layer, from 4.0nm to the single-layer limit, are explored using angle-resolved photoemission spectroscopy. The location of theoretically predicted, but experimentally hitherto unobserved, quantum well states known as the Δ manifold is revealed. Moreover, the number of carriers hosted within the Δ manifold is shown to be strongly affected by the confinement potential, opening the possibility to select carrier characteristics by tuning the dopant-layer thickness.| File | Dimensione | Formato | |
|---|---|---|---|
|
PhysRevB.101.121402-2.pdf
accesso aperto
Descrizione: Accettato per la pubblicazione
Tipologia:
Documento in Post-print
Licenza:
Altro tipo di licenza
Dimensione
3.88 MB
Formato
Adobe PDF
|
3.88 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


