The seafood processing industry’s growing revenue heightens the urgency of treating wastewater rich in harmful pollutants. Addressing this challenge, Anaerobic Membrane Bioreactor (AnMBR) technology emerges as a green and sustainable solution by integrating activated sludge microorganisms and nano-pore membranes without using chemicals. This study hypothesizes that a pilot-scale AnMBR system can effectively treat seafood processing wastewater while achieving compliance with stringent discharge standards. A 0.5 m³/day pilot AnMBR was constructed and operated for two months in a seafood factory to evaluate pollutant removal and operational stability. The system achieved high pollutant removal efficiencies: 99.63 ± 0.14 % Total Suspended Solids (TSS), 61.04 ± 7.77 % Chemical Oxygen Demand (COD), 32.02 ± 17.42 % Total Diluted Solids (TDS), 13.30 ± 4.17 % Total Nitrogen (TN), and 11.12 ± 2.46 % Total Phosphorus (TP), with favorable sludge parameters (SVI: 20, MLSS: 11.5 g/L) and stable operation (TMP: 0.66 bar, flux: 18.2 L/m²⋅h). These results meet two national seafood wastewater discharge standards, highlighting AnMBR’s potential for large-scale applications in the industry. These outcomes obtained at the pilot-scale level meet two national parameters discharge standard which applies specifically to seafood processing wastewater. It underscores the significant potential of AnMBR technology for widespread adoption in treating real-time wastewater generated by the seafood industry.
Green chemistry treatment of seafood processing wastewater using pilot scale Anaerobic Membrane Bioreactor (AnMBR) in a realtime mode
Maria Francesca Vigile;Alfredo Cassano;Francesco Galiano;Alberto FigoliUltimo
2025
Abstract
The seafood processing industry’s growing revenue heightens the urgency of treating wastewater rich in harmful pollutants. Addressing this challenge, Anaerobic Membrane Bioreactor (AnMBR) technology emerges as a green and sustainable solution by integrating activated sludge microorganisms and nano-pore membranes without using chemicals. This study hypothesizes that a pilot-scale AnMBR system can effectively treat seafood processing wastewater while achieving compliance with stringent discharge standards. A 0.5 m³/day pilot AnMBR was constructed and operated for two months in a seafood factory to evaluate pollutant removal and operational stability. The system achieved high pollutant removal efficiencies: 99.63 ± 0.14 % Total Suspended Solids (TSS), 61.04 ± 7.77 % Chemical Oxygen Demand (COD), 32.02 ± 17.42 % Total Diluted Solids (TDS), 13.30 ± 4.17 % Total Nitrogen (TN), and 11.12 ± 2.46 % Total Phosphorus (TP), with favorable sludge parameters (SVI: 20, MLSS: 11.5 g/L) and stable operation (TMP: 0.66 bar, flux: 18.2 L/m²⋅h). These results meet two national seafood wastewater discharge standards, highlighting AnMBR’s potential for large-scale applications in the industry. These outcomes obtained at the pilot-scale level meet two national parameters discharge standard which applies specifically to seafood processing wastewater. It underscores the significant potential of AnMBR technology for widespread adoption in treating real-time wastewater generated by the seafood industry.File | Dimensione | Formato | |
---|---|---|---|
articolo green analytical chemistry 2025 .pdf
accesso aperto
Licenza:
Creative commons
Dimensione
1.4 MB
Formato
Adobe PDF
|
1.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.