Household air pollution exposure can lead to various diseases, including stroke, ischaemic heart disease, chronic obstructive pulmonary disease (COPD), and lung cancer. In this study, an indoor air purification technique was developed employing a visible light-activated photocatalyst consisting of a WO3/Pt-coated ceramic foam filter (CFF). Under visible light irradiation, the coated porous filter was able to decompose toluene, a prevalent indoor air contaminant. The interconnected three-dimensional structure of the CFF with open pores facilitated toluene adsorption and simultaneous decomposition by the photocatalyst. XRD analysis revealed that WO3/Pt had tungsten oxide in a monoclinic crystal structure with immiscible platinum metal clusters. The specific surface area and pore diameter were analyzed using the BET method, while the energy band gap was determined using DRS. XRF spectroscopy was used to find the percentage composition of the material, and structural and morphological studies of the samples were conducted using TEM and FESEM analyses. Photodegradation studies were performed for toluene removal, demonstrating a significant drop in toluene concentration in a short period (99.1% degradation in 150 min). A comparative investigation of the visible light photoactivity of WO3/Pt and TiO2 (P25) in water was conducted utilizing dye degradation tests, and WO3/Pt dominated with its excellent degradation efficiency.

WO3/Pt photocatalyst supported by a ceramic filter for indoor air purification under visible light irradiation

Catalano, Massimo
Writing – Review & Editing
;
2024

Abstract

Household air pollution exposure can lead to various diseases, including stroke, ischaemic heart disease, chronic obstructive pulmonary disease (COPD), and lung cancer. In this study, an indoor air purification technique was developed employing a visible light-activated photocatalyst consisting of a WO3/Pt-coated ceramic foam filter (CFF). Under visible light irradiation, the coated porous filter was able to decompose toluene, a prevalent indoor air contaminant. The interconnected three-dimensional structure of the CFF with open pores facilitated toluene adsorption and simultaneous decomposition by the photocatalyst. XRD analysis revealed that WO3/Pt had tungsten oxide in a monoclinic crystal structure with immiscible platinum metal clusters. The specific surface area and pore diameter were analyzed using the BET method, while the energy band gap was determined using DRS. XRF spectroscopy was used to find the percentage composition of the material, and structural and morphological studies of the samples were conducted using TEM and FESEM analyses. Photodegradation studies were performed for toluene removal, demonstrating a significant drop in toluene concentration in a short period (99.1% degradation in 150 min). A comparative investigation of the visible light photoactivity of WO3/Pt and TiO2 (P25) in water was conducted utilizing dye degradation tests, and WO3/Pt dominated with its excellent degradation efficiency.
2024
Istituto per la Microelettronica e Microsistemi - IMM - Sede Secondaria Lecce
air pollution, WO3/Pt, photocatalysis, environment
File in questo prodotto:
File Dimensione Formato  
Sudipto et al.pdf

accesso aperto

Descrizione: WO3/Pt photocatalyst supported by a ceramic filter for indoor air purification under visible light irradiation
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.71 MB
Formato Adobe PDF
1.71 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/521104
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact