We present a novel decision-making framework for accelerated degradation tests and predictive maintenance that exploits prior knowledge and experimental data on the system’s state. As a framework for sequential decision making in these areas, dynamic programming and reinforcement learning are considered, along with data-driven degradation learning when necessary. Furthermore, we illustrate both stochastic and machine learning degradation models, which are integrated in the framework, using data-driven methods. These methods are presented as a valuable tool for designing life-testing experiments and for maintaining lithium-ion batteries.
A Review of Degradation Models and Remaining Useful Life Prediction for Testing Design and Predictive Maintenance of Lithium-Ion Batteries
Pievatolo, Antonio;Meccariello, Giovanni;
2024
Abstract
We present a novel decision-making framework for accelerated degradation tests and predictive maintenance that exploits prior knowledge and experimental data on the system’s state. As a framework for sequential decision making in these areas, dynamic programming and reinforcement learning are considered, along with data-driven degradation learning when necessary. Furthermore, we illustrate both stochastic and machine learning degradation models, which are integrated in the framework, using data-driven methods. These methods are presented as a valuable tool for designing life-testing experiments and for maintaining lithium-ion batteries.File | Dimensione | Formato | |
---|---|---|---|
sensors-24-03382-v3.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
715.02 kB
Formato
Adobe PDF
|
715.02 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.