Transparent photovoltaics for building integration represent a promising approach for renewable energy deployment. These devices require transparent electrodes to manage transmittance and to ensure proper cell operation. In this study, transparent FAPbBr3-based perovskite solar cells optimized via a passivation treatment were demonstrated with average visible transmittance values above 60% and light utilization efficiencies up to 5.0%. Experiments under varying ultraviolet (UV) irradiance intensities from both front and rear directions revealed performance differences correlated with diffusion-limited transport and open-circuit voltage changes. Combining the UV-radiated experiments and drift-diffusion simulations, an asymmetry between the diffusion lengths of electrons and holes in the perovskite is revealed, with estimated values resulting in less than 50 nm and more than 99 nm, respectively. Our methods not only identify electron−hole diffusion length differences but also introduce a general protocol for characterizing solar cells with transparent electrodes.

Electron Diffusion Length Effect on Direction of Irradiance in Transparent FAPbBr3 Perovskite Solar Cells

Jessica Barichello;
2024

Abstract

Transparent photovoltaics for building integration represent a promising approach for renewable energy deployment. These devices require transparent electrodes to manage transmittance and to ensure proper cell operation. In this study, transparent FAPbBr3-based perovskite solar cells optimized via a passivation treatment were demonstrated with average visible transmittance values above 60% and light utilization efficiencies up to 5.0%. Experiments under varying ultraviolet (UV) irradiance intensities from both front and rear directions revealed performance differences correlated with diffusion-limited transport and open-circuit voltage changes. Combining the UV-radiated experiments and drift-diffusion simulations, an asymmetry between the diffusion lengths of electrons and holes in the perovskite is revealed, with estimated values resulting in less than 50 nm and more than 99 nm, respectively. Our methods not only identify electron−hole diffusion length differences but also introduce a general protocol for characterizing solar cells with transparent electrodes.
2024
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
photovoltaic; perovskite
File in questo prodotto:
File Dimensione Formato  
24 almora et al..pdf

accesso aperto

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.4 MB
Formato Adobe PDF
2.4 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/521261
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact