This study addresses the pressing issue of an aging workforce, concentrating on perceived job insecurity (JI), i.e., the workers' subjective perception of threat to their employment status. Using data from the European Working Condition Survey (EWCS) carried on in 2015, the work combines traditional econometric models and innovative deep learning algorithms to explore a diverse range of predictors of JI. Notable drivers are pinpointed across various categories, revealing age-specific influences. The research also introduces new factors and deploys artificial neural networks (ANNs) to create a survey questionnaire tailored to identify distinct worker clusters sharing similar JI expectations. Analyzing three age groups (under 35, 35-50, and over 50), the study unveils nuanced insights into individual, job-related, and organizational JI determinants. Findings underscore the role of external conditions, organizational policies, and non-standard work options in shaping JI perceptions. Harnessing ANNs, the study pioneers a personalized approach to JI policies, presenting a portfolio of age-specific interventions. The deep learning model aids in feature selection and taxonomy creation, enabling policymakers to devise targeted strategies based on the diverse needs of workers. Overall, the findings enhance our understanding of JI across different career stages, offering practical implications for policymakers and managers aiming to align workforce needs with job security expectations, ultimately fostering the health and engagement of an aging workforce.

From insights to impact: tailored, age-responsive strategies for mitigating job insecurity

Luisa Errichiello;Greta Falavigna
2024

Abstract

This study addresses the pressing issue of an aging workforce, concentrating on perceived job insecurity (JI), i.e., the workers' subjective perception of threat to their employment status. Using data from the European Working Condition Survey (EWCS) carried on in 2015, the work combines traditional econometric models and innovative deep learning algorithms to explore a diverse range of predictors of JI. Notable drivers are pinpointed across various categories, revealing age-specific influences. The research also introduces new factors and deploys artificial neural networks (ANNs) to create a survey questionnaire tailored to identify distinct worker clusters sharing similar JI expectations. Analyzing three age groups (under 35, 35-50, and over 50), the study unveils nuanced insights into individual, job-related, and organizational JI determinants. Findings underscore the role of external conditions, organizational policies, and non-standard work options in shaping JI perceptions. Harnessing ANNs, the study pioneers a personalized approach to JI policies, presenting a portfolio of age-specific interventions. The deep learning model aids in feature selection and taxonomy creation, enabling policymakers to devise targeted strategies based on the diverse needs of workers. Overall, the findings enhance our understanding of JI across different career stages, offering practical implications for policymakers and managers aiming to align workforce needs with job security expectations, ultimately fostering the health and engagement of an aging workforce.
2024
Istituto di Studi sul Mediterraneo - ISMed
Istituto di Ricerca sulla Crescita Economica Sostenibile - IRCrES
job insecurity, predictors, European Working Conditions Survey (EWCS), Ordered Logistic (OL) regression models, artificial neural networks
File in questo prodotto:
File Dimensione Formato  
Programma-Age-It-20-22-Maggio-2024-online.pdf

accesso aperto

Descrizione: Programma Convegno Age-It
Tipologia: Altro materiale allegato
Licenza: Dominio pubblico
Dimensione 858.23 kB
Formato Adobe PDF
858.23 kB Adobe PDF Visualizza/Apri
Luisa Errichiello bis (1).pdf

non disponibili

Descrizione: Certificato
Tipologia: Altro materiale allegato
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 77.67 kB
Formato Adobe PDF
77.67 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Abstract-Errichiello_Falavigna_JI_Venezia_24-3.pdf

solo utenti autorizzati

Descrizione: abstract (short and extended -submitted for selection)
Tipologia: Abstract
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 151.73 kB
Formato Adobe PDF
151.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
JI_Venice24_ppt.pdf

non disponibili

Descrizione: presentazione
Tipologia: Altro materiale allegato
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.58 MB
Formato Adobe PDF
1.58 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
[AGE-IT] YOU HAVE BEEN ACCEPTED FOR AN ORAL SESSION AT THE GENERAL MEETING 2024.pdf

non disponibili

Descrizione: lettera accettazione abstract
Tipologia: Altro materiale allegato
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 65.33 kB
Formato Adobe PDF
65.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/521275
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact