An investigation on the photoelectrochemical and sensitizing properties of two different hybrid organic dyes, anchored as sensitizers on mesoporous TiO2, in Grätzel solar cells, is presented. Firstly, we studied the absorption properties of the C106 sensitizer, a Ru polypyridine complex, and of the Y123, an organic push and pull dye. In this work, we characterized these two dyes, employing two different electrolytes, with similar experimental condition and device parameters. From the J–V curves and IPCE photo action spectra, we performed an inedited bifacial study based on the comparison of their photovoltaic performances, exploiting several backgrounds (black or white). Among the obtained results from this study, we found the best bifaciality factor of 93% for C106 and the best power conversion efficiency of 12.8% for Y123. These results represent, concerning these two dyes and to the best of our knowledge, some of the highest values in literature.

A Photoelectrochemical Study of Hybrid Organic and Donor—Acceptor Dyes as Sensitizers for Dye-Sensitized Solar Cells

Jessica Barichello
;
Gaetano Di Marco;Giuseppe Calogero
2022

Abstract

An investigation on the photoelectrochemical and sensitizing properties of two different hybrid organic dyes, anchored as sensitizers on mesoporous TiO2, in Grätzel solar cells, is presented. Firstly, we studied the absorption properties of the C106 sensitizer, a Ru polypyridine complex, and of the Y123, an organic push and pull dye. In this work, we characterized these two dyes, employing two different electrolytes, with similar experimental condition and device parameters. From the J–V curves and IPCE photo action spectra, we performed an inedited bifacial study based on the comparison of their photovoltaic performances, exploiting several backgrounds (black or white). Among the obtained results from this study, we found the best bifaciality factor of 93% for C106 and the best power conversion efficiency of 12.8% for Y123. These results represent, concerning these two dyes and to the best of our knowledge, some of the highest values in literature.
2022
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
Istituto per i Processi Chimico-Fisici - IPCF - Sede Messina
dye-sensitized solar cells; solar energy conversion; hybrid organic photovoltaics; bifacial solar devices
File in questo prodotto:
File Dimensione Formato  
22 Barichello App.Sci.pdf

accesso aperto

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.75 MB
Formato Adobe PDF
1.75 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/521324
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact