The development of spintronic devices has been limited by the poor compatibility between semiconductors and ferromagnetic sources of spin. The broken inversion symmetry of some semiconductors may allow for spin–charge interconversion, but its control by electric fields is volatile. This has led to interest in ferroelectric Rashba semiconductors, which combine semiconductivity, large spin–orbit coupling and non-volatility. Here we report room-temperature, non-volatile ferroelectric control of spin-to-charge conversion in epitaxial germanium telluride films. We show that ferroelectric switching by electrical gating is possible in germanium telluride, despite its high carrier density. We also show that spin-to-charge conversion has a similar magnitude to what is observed with platinum, but the charge current sign is controlled by the orientation of ferroelectric polarization. Comparison between theoretical and experimental data suggests that the inverse spin Hall effect plays a major role in switchable conversion.

Room-temperature ferroelectric switching of spin-to-charge conversion in germanium telluride

Calarco R.;Picozzi S.;Bertacco R.;Rinaldi C.
2021

Abstract

The development of spintronic devices has been limited by the poor compatibility between semiconductors and ferromagnetic sources of spin. The broken inversion symmetry of some semiconductors may allow for spin–charge interconversion, but its control by electric fields is volatile. This has led to interest in ferroelectric Rashba semiconductors, which combine semiconductivity, large spin–orbit coupling and non-volatility. Here we report room-temperature, non-volatile ferroelectric control of spin-to-charge conversion in epitaxial germanium telluride films. We show that ferroelectric switching by electrical gating is possible in germanium telluride, despite its high carrier density. We also show that spin-to-charge conversion has a similar magnitude to what is observed with platinum, but the charge current sign is controlled by the orientation of ferroelectric polarization. Comparison between theoretical and experimental data suggests that the inverse spin Hall effect plays a major role in switchable conversion.
2021
Istituto per la Microelettronica e Microsistemi - IMM
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Istituto di fotonica e nanotecnologie - IFN
spintronic
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/521507
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 74
  • ???jsp.display-item.citation.isi??? ND
social impact