Organic–inorganic hybrid perovskite materials have raised great interest in recent years due to their excellent optoelectronic properties, which promise stunning improvements in photovoltaic technologies. Moreover, two-dimensional layered materials such as graphene, its derivatives, and transition metal dichalcogenides have been extensively investigated for a wide range of electronic and optoelectronic applications and have recently shown a synergistic effect in combination with hybrid perovskite materials. Here, we report on the inclusion of liquid-phase exfoliated molybdenum disulfide nanosheets into different perovskite precursor solutions, exploring their influence on final device performance. We compared the effect of such additives upon the growth of diverse perovskites, namely CH3NH3PbI3 (MAPbI3 ) and triple-cation with mixed halides Csx (MA0.17FA0.83 )(1−x)Pb (I0.83Br0.17 )3 perovskite. We show how for the referential MAPbI3 materials the addition of the MoS2 additive leads to the formation of larger, highly crystalline grains, which result in a remarkable 15% relative improvement in power conversion efficiency. On the other hand, for the mixed cation– halide perovskite no improvements were observed, confirming that the nucleation process for the two materials is differently influenced by the presence of MoS2 .

Inclusion of 2d transition metal dichalcogenides in perovskite inks and their influence on solar cell performance

Carallo S.;Colella S.;Gigli G.;Listorti A.
;
Rizzo A.
Ultimo
2021

Abstract

Organic–inorganic hybrid perovskite materials have raised great interest in recent years due to their excellent optoelectronic properties, which promise stunning improvements in photovoltaic technologies. Moreover, two-dimensional layered materials such as graphene, its derivatives, and transition metal dichalcogenides have been extensively investigated for a wide range of electronic and optoelectronic applications and have recently shown a synergistic effect in combination with hybrid perovskite materials. Here, we report on the inclusion of liquid-phase exfoliated molybdenum disulfide nanosheets into different perovskite precursor solutions, exploring their influence on final device performance. We compared the effect of such additives upon the growth of diverse perovskites, namely CH3NH3PbI3 (MAPbI3 ) and triple-cation with mixed halides Csx (MA0.17FA0.83 )(1−x)Pb (I0.83Br0.17 )3 perovskite. We show how for the referential MAPbI3 materials the addition of the MoS2 additive leads to the formation of larger, highly crystalline grains, which result in a remarkable 15% relative improvement in power conversion efficiency. On the other hand, for the mixed cation– halide perovskite no improvements were observed, confirming that the nucleation process for the two materials is differently influenced by the presence of MoS2 .
2021
Istituto di Nanotecnologia - NANOTEC
Istituto di Nanotecnologia - NANOTEC - Sede Lecce
Heterogeneous nucleation
Morphology
MoS2 additive
Perovskite solar cells
File in questo prodotto:
File Dimensione Formato  
nanomaterials-11-01706.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.99 MB
Formato Adobe PDF
2.99 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/521531
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact