Wave crests of unexpected height and steepness pose a danger to activities at sea, and long-term field measurements provide important clues for understanding the environmental conditions that are conducive to their generation and behavior. We present a novel dataset of high-frequency laser altimeter measurements of the sea surface elevation gath-ered over a period of 18 years from 2003 to 2020 on an offshore platform in the central North Sea. Our analysis of crest height distributions in the dataset shows that mature, high sea states with high spectral steepness and narrow directional spreading exhibit crest height statistics that significantly deviate from standard second-order models. Conversely, crest heights in developing sea states with similarly high steepness but wide directional spread correspond well to second-order theory adjusted for broad frequency bandwidth. The long-term point time series measurements are complemented with space–time stereo video observations from the same location, collected during five separate storm events during the 2019/20 winter season. An examination of the crest dynamics of the space–time extreme wave crests in the stereo video dataset reveals that the crest speeds exhibit a slowdown localized around the moment of maximum crest elevation, in line with prevailing theory on nonlinear wave group dynamics. Extending on previously published observations focused on breaking crests, our results are consistent for both breaking and nonbreaking extreme crests. We show that wave crest steepness estimated from time series using the linear dispersion relation may overestimate the geometrically measured crest steepness by up to 25% if the crest speed slowdown is not taken into account.
Statistical and Dynamical Characteristics of Extreme Wave Crests Assessed with Field Measurements from the North Sea
Barbariol F.;Benetazzo A.;
2023
Abstract
Wave crests of unexpected height and steepness pose a danger to activities at sea, and long-term field measurements provide important clues for understanding the environmental conditions that are conducive to their generation and behavior. We present a novel dataset of high-frequency laser altimeter measurements of the sea surface elevation gath-ered over a period of 18 years from 2003 to 2020 on an offshore platform in the central North Sea. Our analysis of crest height distributions in the dataset shows that mature, high sea states with high spectral steepness and narrow directional spreading exhibit crest height statistics that significantly deviate from standard second-order models. Conversely, crest heights in developing sea states with similarly high steepness but wide directional spread correspond well to second-order theory adjusted for broad frequency bandwidth. The long-term point time series measurements are complemented with space–time stereo video observations from the same location, collected during five separate storm events during the 2019/20 winter season. An examination of the crest dynamics of the space–time extreme wave crests in the stereo video dataset reveals that the crest speeds exhibit a slowdown localized around the moment of maximum crest elevation, in line with prevailing theory on nonlinear wave group dynamics. Extending on previously published observations focused on breaking crests, our results are consistent for both breaking and nonbreaking extreme crests. We show that wave crest steepness estimated from time series using the linear dispersion relation may overestimate the geometrically measured crest steepness by up to 25% if the crest speed slowdown is not taken into account.File | Dimensione | Formato | |
---|---|---|---|
MALILA_et_al_2023_extreme_waves_north_sea.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Altro tipo di licenza
Dimensione
3.8 MB
Formato
Adobe PDF
|
3.8 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.