The problem of modeling water flow in the root zone with plant root absorption is of crucial importance in many environmental and agricultural issues, and is still of interest in the applied mathematics community. In this work we propose a formal justification and a theoretical background of a recently introduced numerical approach, based on the shooting method, for integrating the unsaturated flow equation with a sink term accounting for the root water uptake model. Moreover, we provide various numerical simulations for this method, comparing the results with the numerical solutions obtained by MATLAB pdepe.

On the Shooting Method Applied to Richards' Equation with a Forcing Term

Difonzo, F. V.
;
Girardi, G.
2021

Abstract

The problem of modeling water flow in the root zone with plant root absorption is of crucial importance in many environmental and agricultural issues, and is still of interest in the applied mathematics community. In this work we propose a formal justification and a theoretical background of a recently introduced numerical approach, based on the shooting method, for integrating the unsaturated flow equation with a sink term accounting for the root water uptake model. Moreover, we provide various numerical simulations for this method, comparing the results with the numerical solutions obtained by MATLAB pdepe.
2021
Istituto per le applicazioni del calcolo - IAC - Sede Secondaria Bari
9783030866525
Numerical simulations
Richards’ equation
Shooting method
File in questo prodotto:
File Dimensione Formato  
Difonzo-Girardi2021_Chapter_OnTheShootingMethodAppliedToRi.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/521550
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact