The calculation of the electron–phonon coupling from first principles is computationally very challenging and remains mostly out of reach for systems with a large number of atoms. Semi-empirical methods, like density functional tight binding (DFTB), provide a framework for obtaining quantitative results at moderate computational costs. Herein, we present a new method based on the DFTB approach for computing electron–phonon couplings and relaxation times. It interfaces with phonopy for vibrational modes and dftb+ to calculate transport properties. We derive the electron–phonon coupling within a non-orthogonal tight-binding framework and apply them to graphene as a test case.
DFTBephy: A DFTB-based approach for electron–phonon coupling calculations
Pecchia A.
Writing – Original Draft Preparation
2023
Abstract
The calculation of the electron–phonon coupling from first principles is computationally very challenging and remains mostly out of reach for systems with a large number of atoms. Semi-empirical methods, like density functional tight binding (DFTB), provide a framework for obtaining quantitative results at moderate computational costs. Herein, we present a new method based on the DFTB approach for computing electron–phonon couplings and relaxation times. It interfaces with phonopy for vibrational modes and dftb+ to calculate transport properties. We derive the electron–phonon coupling within a non-orthogonal tight-binding framework and apply them to graphene as a test case.File | Dimensione | Formato | |
---|---|---|---|
s10825-023-02033-9.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.74 MB
Formato
Adobe PDF
|
1.74 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.