We discuss the dynamics of a (neutral) test particle in topological star spacetime undergoing scattering processes by a superposed test radiation field, a situation that in a 4D black hole spacetime is known as relativistic Poynting-Robertson effect, paving the way for future studies involving radiation-reaction effects. Furthermore, we study self-force-driven evolution of a scalar field, perturbing the top-star spacetime with a scalar charge current. The latter for simplicity is taken to be circular, equatorial and geodetic. To perform this study, besides solving all the self-force related problem (regularization of all divergences due to the self-field, mode sum regularization, etc.), we had to adapt the 4D Mano-Suzuki-Takasugi formalism to the present 5D situation. Finally, we have compared this formalism with the (quantum) Seiberg-Witten formalism, both of which are related to the solutions of a Heun confluent equation but appear in different contexts in the literature: the first in black hole perturbation theory and the second in quantum curves in super-Yang-Mills theories.

Scalar perturbations of topological-star spacetimes

Bini D.
Membro del Collaboration Group
;
2024

Abstract

We discuss the dynamics of a (neutral) test particle in topological star spacetime undergoing scattering processes by a superposed test radiation field, a situation that in a 4D black hole spacetime is known as relativistic Poynting-Robertson effect, paving the way for future studies involving radiation-reaction effects. Furthermore, we study self-force-driven evolution of a scalar field, perturbing the top-star spacetime with a scalar charge current. The latter for simplicity is taken to be circular, equatorial and geodetic. To perform this study, besides solving all the self-force related problem (regularization of all divergences due to the self-field, mode sum regularization, etc.), we had to adapt the 4D Mano-Suzuki-Takasugi formalism to the present 5D situation. Finally, we have compared this formalism with the (quantum) Seiberg-Witten formalism, both of which are related to the solutions of a Heun confluent equation but appear in different contexts in the literature: the first in black hole perturbation theory and the second in quantum curves in super-Yang-Mills theories.
2024
Istituto Applicazioni del Calcolo ''Mauro Picone''
Topological star spacetime, massless scalar field perturbations
File in questo prodotto:
File Dimensione Formato  
PhysRevD.110.084077.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 611.99 kB
Formato Adobe PDF
611.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/522007
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact