We discuss the dynamics of a (neutral) test particle in topological star spacetime undergoing scattering processes by a superposed test radiation field, a situation that in a 4D black hole spacetime is known as relativistic Poynting-Robertson effect, paving the way for future studies involving radiation-reaction effects. Furthermore, we study self-force-driven evolution of a scalar field, perturbing the top-star spacetime with a scalar charge current. The latter for simplicity is taken to be circular, equatorial and geodetic. To perform this study, besides solving all the self-force related problem (regularization of all divergences due to the self-field, mode sum regularization, etc.), we had to adapt the 4D Mano-Suzuki-Takasugi formalism to the present 5D situation. Finally, we have compared this formalism with the (quantum) Seiberg-Witten formalism, both of which are related to the solutions of a Heun confluent equation but appear in different contexts in the literature: the first in black hole perturbation theory and the second in quantum curves in super-Yang-Mills theories.
Scalar perturbations of topological-star spacetimes
Bini D.Membro del Collaboration Group
;
2024
Abstract
We discuss the dynamics of a (neutral) test particle in topological star spacetime undergoing scattering processes by a superposed test radiation field, a situation that in a 4D black hole spacetime is known as relativistic Poynting-Robertson effect, paving the way for future studies involving radiation-reaction effects. Furthermore, we study self-force-driven evolution of a scalar field, perturbing the top-star spacetime with a scalar charge current. The latter for simplicity is taken to be circular, equatorial and geodetic. To perform this study, besides solving all the self-force related problem (regularization of all divergences due to the self-field, mode sum regularization, etc.), we had to adapt the 4D Mano-Suzuki-Takasugi formalism to the present 5D situation. Finally, we have compared this formalism with the (quantum) Seiberg-Witten formalism, both of which are related to the solutions of a Heun confluent equation but appear in different contexts in the literature: the first in black hole perturbation theory and the second in quantum curves in super-Yang-Mills theories.File | Dimensione | Formato | |
---|---|---|---|
PhysRevD.110.084077.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
611.99 kB
Formato
Adobe PDF
|
611.99 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.