The use of interleaving material with viscoelastic properties is one of the most effective solutions to improve the damping capacity of carbon fibre-reinforced polymer (CFRP) laminates. Improving composite damping without threatening mechanical performance is challenging and the use of nanomaterials should lead to the target. In this paper, the effect of a nanostructured interlayer based on graphite nanoplatelets (GNPs) on the damping capacity and fracture toughness of CFRP laminates has been investigated. High-content GNP/epoxy (70 wt/30 wt) coating was sprayed on the surface of CF/epoxy prepregs at two different contents (10 and 40 g/m2) and incorporated at the middle plane of a CFRP laminate. The effect of the GNP areal weights on the viscoelastic and mechanical behaviour of the laminates is investigated. Coupons with low GNP content showed a 25% increase in damping capacity with a trivial reduction in the storage modulus. Moreover, a reduction in interlaminar shear strength (ILSS) and fracture toughness (both mode I and mode II) was observed. The GNP alignment and degree of compaction reached during the process were found to be key parameters on material performances. By increasing the GNP content and compaction, a mitigation on the fracture drop was achieved (−15%).
Mechanical and Viscoelastic Properties of Carbon Fibre Epoxy Composites with Interleaved Graphite Nanoplatelet Layer
Palmieri B.;Giordano M.;Martone A.
;Cilento F.
2023
Abstract
The use of interleaving material with viscoelastic properties is one of the most effective solutions to improve the damping capacity of carbon fibre-reinforced polymer (CFRP) laminates. Improving composite damping without threatening mechanical performance is challenging and the use of nanomaterials should lead to the target. In this paper, the effect of a nanostructured interlayer based on graphite nanoplatelets (GNPs) on the damping capacity and fracture toughness of CFRP laminates has been investigated. High-content GNP/epoxy (70 wt/30 wt) coating was sprayed on the surface of CF/epoxy prepregs at two different contents (10 and 40 g/m2) and incorporated at the middle plane of a CFRP laminate. The effect of the GNP areal weights on the viscoelastic and mechanical behaviour of the laminates is investigated. Coupons with low GNP content showed a 25% increase in damping capacity with a trivial reduction in the storage modulus. Moreover, a reduction in interlaminar shear strength (ILSS) and fracture toughness (both mode I and mode II) was observed. The GNP alignment and degree of compaction reached during the process were found to be key parameters on material performances. By increasing the GNP content and compaction, a mitigation on the fracture drop was achieved (−15%).File | Dimensione | Formato | |
---|---|---|---|
jcs-07-00235.pdf
accesso aperto
Descrizione: articolo
Tipologia:
Versione Editoriale (PDF)
Licenza:
Dominio pubblico
Dimensione
14.19 MB
Formato
Adobe PDF
|
14.19 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.