In this paper we present an approach to compute analytical post-Minkowskian corrections to unbound two-body scattering in the self-force formalism. Our method relies on a further low-velocity (post-Newtonian) expansion of the motion. We present a general strategy valid for gravitational and nongravitational self-force, and we explicitly demonstrate our approach for a scalar charge scattering off a Schwarzschild black hole. We compare our results with recent calculations in [L. Barack, Comparison of post-Minkowskian and self-force expansions: Scattering in a scalar charge toy model, Phys. Rev. D 108, 024025 (2023)PRVDAQ2470-001010.1103/PhysRevD.108.024025], showing complete agreement where appropriate and fixing undetermined scale factors in their calculation. Our results also extend their results by including in our dissipative sector the contributions from the flux into the black hole horizon.
Post-Minkowskian self-force in the low-velocity limit: Scalar field scattering
Bini D.Membro del Collaboration Group
;Geralico A.Membro del Collaboration Group
;
2024
Abstract
In this paper we present an approach to compute analytical post-Minkowskian corrections to unbound two-body scattering in the self-force formalism. Our method relies on a further low-velocity (post-Newtonian) expansion of the motion. We present a general strategy valid for gravitational and nongravitational self-force, and we explicitly demonstrate our approach for a scalar charge scattering off a Schwarzschild black hole. We compare our results with recent calculations in [L. Barack, Comparison of post-Minkowskian and self-force expansions: Scattering in a scalar charge toy model, Phys. Rev. D 108, 024025 (2023)PRVDAQ2470-001010.1103/PhysRevD.108.024025], showing complete agreement where appropriate and fixing undetermined scale factors in their calculation. Our results also extend their results by including in our dissipative sector the contributions from the flux into the black hole horizon.File | Dimensione | Formato | |
---|---|---|---|
PhysRevD.110.064050.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
392.1 kB
Formato
Adobe PDF
|
392.1 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.