We revisit the quantum-amplitude-based derivation of the gravitational waveform emitted by the scattering of two spinless massive bodies at the third order in Newton's constant, h∼G+G2+G3 (one-loop level), and correspondingly update its comparison with its classically derived multipolar-post-Minkowskian counterpart. A spurious-pole-free reorganization of the one-loop five-point amplitude substantially simplifies the post-Newtonian expansion. We find complete agreement between the two results up to the fifth order in the small velocity expansion after taking into account three subtle aspects of the amplitude derivation: (1) in agreement with [A. Georgoudis et al., J. High Energy Phys. 03 (2024) 08910.1007/JHEP03(2024)089], the term quadratic in the amplitude in the observable-based formalism [D. A. Kosower et al., J. High Energy Phys. 02 (2019) 137JHEPFG1029-847910.1007/JHEP02(2019)137] generates a frame rotation by half the classical scattering angle; (2) the dimensional regularization of the infrared divergences of the amplitude introduces an additional (d-4)/(d-4) finite term; and (3) zero-frequency gravitons are found to contribute additional terms both at order h∼G1 and at order h∼G3 when including disconnected diagrams in the observable-based formalism.

Gravitational waveforms: A tale of two formalisms

Bini D.
Membro del Collaboration Group
;
Geralico A.
Membro del Collaboration Group
;
2024

Abstract

We revisit the quantum-amplitude-based derivation of the gravitational waveform emitted by the scattering of two spinless massive bodies at the third order in Newton's constant, h∼G+G2+G3 (one-loop level), and correspondingly update its comparison with its classically derived multipolar-post-Minkowskian counterpart. A spurious-pole-free reorganization of the one-loop five-point amplitude substantially simplifies the post-Newtonian expansion. We find complete agreement between the two results up to the fifth order in the small velocity expansion after taking into account three subtle aspects of the amplitude derivation: (1) in agreement with [A. Georgoudis et al., J. High Energy Phys. 03 (2024) 08910.1007/JHEP03(2024)089], the term quadratic in the amplitude in the observable-based formalism [D. A. Kosower et al., J. High Energy Phys. 02 (2019) 137JHEPFG1029-847910.1007/JHEP02(2019)137] generates a frame rotation by half the classical scattering angle; (2) the dimensional regularization of the infrared divergences of the amplitude introduces an additional (d-4)/(d-4) finite term; and (3) zero-frequency gravitons are found to contribute additional terms both at order h∼G1 and at order h∼G3 when including disconnected diagrams in the observable-based formalism.
2024
Istituto Applicazioni del Calcolo ''Mauro Picone''
Two body problem, waveform, 4PM
File in questo prodotto:
File Dimensione Formato  
2402.06604v2.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Altro tipo di licenza
Dimensione 637.72 kB
Formato Adobe PDF
637.72 kB Adobe PDF Visualizza/Apri
PhysRevD.109.125008.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 706.33 kB
Formato Adobe PDF
706.33 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/522016
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact