We investigate the geometrical properties, spectral classification, geodesics, and causal structure of Bonnor's spacetime [W. B. Bonnor, A rotating dust cloud in general relativity, J. Phys. A 10, 1673 (1977)JPHAC50305-447010.1088/0305-4470/10/10/004], i.e., a stationary axisymmetric solution with a rotating dust as a source. This spacetime has a directional singularity at the origin of the coordinates (related to the diverging vorticity field of the fluid there), which is surrounded by a toroidal region where closed timelike curves (CTCs) are allowed, leading to chronology violations. We use the effective potential approach to provide a classification of the different kind of geodesic orbits on the symmetry plane as well as to study the helical-like motion around the symmetry axis on a cylinder with constant radius. In the former case we find that, as a general feature for positive values of the angular momentum, test particles released from a fixed space point and directed toward the singularity are repelled and scattered back as soon as they approach the CTC boundary, without reaching the central singularity. In contrast, for negative values of the angular momentum there exist conditions in the parameter space for which particles are allowed to enter the pathological region. Finally, as a more realistic mechanism, we study accelerated orbits undergoing friction forces due to the interaction with the background fluid, which may also act in order to prevent particles from approaching the CTC region.

Particle motion in a rotating dust spacetime

Bini D.
Membro del Collaboration Group
;
Geralico A.
Membro del Collaboration Group
;
2024

Abstract

We investigate the geometrical properties, spectral classification, geodesics, and causal structure of Bonnor's spacetime [W. B. Bonnor, A rotating dust cloud in general relativity, J. Phys. A 10, 1673 (1977)JPHAC50305-447010.1088/0305-4470/10/10/004], i.e., a stationary axisymmetric solution with a rotating dust as a source. This spacetime has a directional singularity at the origin of the coordinates (related to the diverging vorticity field of the fluid there), which is surrounded by a toroidal region where closed timelike curves (CTCs) are allowed, leading to chronology violations. We use the effective potential approach to provide a classification of the different kind of geodesic orbits on the symmetry plane as well as to study the helical-like motion around the symmetry axis on a cylinder with constant radius. In the former case we find that, as a general feature for positive values of the angular momentum, test particles released from a fixed space point and directed toward the singularity are repelled and scattered back as soon as they approach the CTC boundary, without reaching the central singularity. In contrast, for negative values of the angular momentum there exist conditions in the parameter space for which particles are allowed to enter the pathological region. Finally, as a more realistic mechanism, we study accelerated orbits undergoing friction forces due to the interaction with the background fluid, which may also act in order to prevent particles from approaching the CTC region.
2024
Istituto Applicazioni del Calcolo ''Mauro Picone''
Particle's motion in a rotating spacetime, Bonnor's solution
File in questo prodotto:
File Dimensione Formato  
PhysRevD.109.124011.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.37 MB
Formato Adobe PDF
2.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/522019
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact