The industrialization of perovskite solar cells relies on solving intrinsic-to-material issues. To reach record efficiencies perovskite deposition needs to be finely adjusted by multi-step processes, in a humidity free glove-box environment and by means of hardly scalable techniques often associated with toxic solvents and anti-solvent dripping/bath. Herein, the use of polymeric material is proposed to deposit perovskite layers with easy processability. To the scope, a starch-polymer/perovskite composite is developed to suit slot-die coating technique requirement, allowing the deposition of hybrid halide perovskite material in a single straightforward step without the use of toxic solvents, and in uncontrolled humid environment (RH up to 70 %). The starch-polymer increases the viscosity of the perovskite precursor solutions and delays the perovskite crystallization that results in the formation of perovskite films at mild temperature (60 °C) with good morphology. These innovative inks enables the fabrication of flexible solar cells with p-i-n configuration featured by a power conversion efficiency higher than 3 %. . Overall, this approach can be exploited in the future to massively reduce perovskite manufacturing costs related to keeping the entire fabrication line at high-temperature and under nitrogen or dry conditions.

Polymer-Assisted Single-Step Slot-Die Coating of Flexible Perovskite Solar Cells at Mild Temperature from Dimethyl Sulfoxide

Bisconti, F.;Giuri, A.;Listorti, A.
;
Colella, S.;Rizzo, A.
2021

Abstract

The industrialization of perovskite solar cells relies on solving intrinsic-to-material issues. To reach record efficiencies perovskite deposition needs to be finely adjusted by multi-step processes, in a humidity free glove-box environment and by means of hardly scalable techniques often associated with toxic solvents and anti-solvent dripping/bath. Herein, the use of polymeric material is proposed to deposit perovskite layers with easy processability. To the scope, a starch-polymer/perovskite composite is developed to suit slot-die coating technique requirement, allowing the deposition of hybrid halide perovskite material in a single straightforward step without the use of toxic solvents, and in uncontrolled humid environment (RH up to 70 %). The starch-polymer increases the viscosity of the perovskite precursor solutions and delays the perovskite crystallization that results in the formation of perovskite films at mild temperature (60 °C) with good morphology. These innovative inks enables the fabrication of flexible solar cells with p-i-n configuration featured by a power conversion efficiency higher than 3 %. . Overall, this approach can be exploited in the future to massively reduce perovskite manufacturing costs related to keeping the entire fabrication line at high-temperature and under nitrogen or dry conditions.
2021
Istituto di Nanotecnologia - NANOTEC
Istituto di Nanotecnologia - NANOTEC - Sede Lecce
perovskites
photovoltaic devices
polymers
slot-die coating
solar energy conversion
File in questo prodotto:
File Dimensione Formato  
ChemPlusChem - 2021 - Bisconti - Polymer‐Assisted Single‐Step Slot‐Die Coating of Flexible Perovskite Solar Cells at Mild.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/522131
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 27
social impact