Colloidal gold nanoparticles (GNPs) have found wide-ranging applications in nanomedicine due to their unique optical properties, ease of preparation, and functionalization. To avoid the formation of GNP aggregates in the physiological environment, molecules such as lipids, polysaccharides, or polymers are employed as GNP coatings. Here, we present the colloidal stabilization of GNPs using ultrashort α,β-peptides containing the repeating unit of a diaryl β2,3-amino acid and characterized by an extended conformation. Differently functionalized GNPs have been characterized by ultraviolet, dynamic light scattering, and transmission electron microscopy analysis, allowing us to define the best candidate that inhibits the aggregation of GNPs not only in water but also in mouse serum. In particular, a short tripeptide was found to be able to stabilize GNPs in physiological media over 3 months. This new system has been further capped with albumin, obtaining a material with even more colloidal stability and ability to prevent the formation of a thick protein corona in physiological media.

Exploiting Ultrashort α,β-Peptides in the Colloidal Stabilization of Gold Nanoparticles

Ferretti, Anna Maria;
2021

Abstract

Colloidal gold nanoparticles (GNPs) have found wide-ranging applications in nanomedicine due to their unique optical properties, ease of preparation, and functionalization. To avoid the formation of GNP aggregates in the physiological environment, molecules such as lipids, polysaccharides, or polymers are employed as GNP coatings. Here, we present the colloidal stabilization of GNPs using ultrashort α,β-peptides containing the repeating unit of a diaryl β2,3-amino acid and characterized by an extended conformation. Differently functionalized GNPs have been characterized by ultraviolet, dynamic light scattering, and transmission electron microscopy analysis, allowing us to define the best candidate that inhibits the aggregation of GNPs not only in water but also in mouse serum. In particular, a short tripeptide was found to be able to stabilize GNPs in physiological media over 3 months. This new system has been further capped with albumin, obtaining a material with even more colloidal stability and ability to prevent the formation of a thick protein corona in physiological media.
2021
Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC
Biopolymers
, Dynamic light scattering
Peptides and proteins Serum
Transmission electron microscopy
File in questo prodotto:
File Dimensione Formato  
2021_langmuir_Exploiting Ultrashort α,β-Peptides in the Colloidal Stabilization of.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 5.67 MB
Formato Adobe PDF
5.67 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/522146
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact