Helical shaped fused bis-phenothiazines 1–9 have been prepared and their red-ox behaviour quantitatively studied. Helicene radical cations (Hel.+) can be obtained either by UV-irradiation in the presence of PhCl or by chemical oxidation. The latter process is extremely sensitive to the presence of acids in the medium with molecular oxygen becoming a good single electron transfer (SET) oxidant. The reaction of hydroxy substituted helicenes 5–9 with peroxyl radicals (ROO.) occurs with a ‘classical’ HAT process giving HelO. radicals with kinetics depending upon the substitution pattern of the aromatic rings. In the presence of acetic acid, a fast medium-promoted proton-coupled electron transfer (PCET) process takes place with formation of HelO. radicals possibly also via a helicene radical cation intermediate. Remarkably, also helicenes 1–4, lacking phenoxyl groups, in the presence of acetic acid react with peroxyl radicals through a medium-promoted PCET mechanism with formation of the radical cations Hel.+. Along with the synthesis, EPR studies of radicals and radical cations, BDE of Hel-OH group (BDEOH), and kinetic constants (kinh) of the reactions with ROO. species of helicenes 1–9 have been measured and calculated to afford a complete rationalization of the redox behaviour of these appealing chiral compounds.
SET and HAT/PCET acid-mediated oxidation processes in helical shaped fused bis-phenothiazines
Baschieri Andrea;
2021
Abstract
Helical shaped fused bis-phenothiazines 1–9 have been prepared and their red-ox behaviour quantitatively studied. Helicene radical cations (Hel.+) can be obtained either by UV-irradiation in the presence of PhCl or by chemical oxidation. The latter process is extremely sensitive to the presence of acids in the medium with molecular oxygen becoming a good single electron transfer (SET) oxidant. The reaction of hydroxy substituted helicenes 5–9 with peroxyl radicals (ROO.) occurs with a ‘classical’ HAT process giving HelO. radicals with kinetics depending upon the substitution pattern of the aromatic rings. In the presence of acetic acid, a fast medium-promoted proton-coupled electron transfer (PCET) process takes place with formation of HelO. radicals possibly also via a helicene radical cation intermediate. Remarkably, also helicenes 1–4, lacking phenoxyl groups, in the presence of acetic acid react with peroxyl radicals through a medium-promoted PCET mechanism with formation of the radical cations Hel.+. Along with the synthesis, EPR studies of radicals and radical cations, BDE of Hel-OH group (BDEOH), and kinetic constants (kinh) of the reactions with ROO. species of helicenes 1–9 have been measured and calculated to afford a complete rationalization of the redox behaviour of these appealing chiral compounds.| File | Dimensione | Formato | |
|---|---|---|---|
|
53_ChemPhysChem 2021, 22, 1446 – 1454.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
3.18 MB
Formato
Adobe PDF
|
3.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


