In this paper we consider homaloidal polynomial functions f such that their multiplicative Legendre transform f*, defined as in Etingof et al. (Sel. Math. (N. S.) 8(1):27-66, 2002), Section 3. 2 is again polynomial. Following Dolgachev (Michigan Math. J. 48:191-202, 2000), we call such polynomials EKP-homaloidal. We prove that every EKP-homaloidal polynomial function of degree three is a relative invariant of a symmetric prehomogeneous vector space. This provides a complete proof of Etingof et al. (Sel. Math. (N. S.) 8(1):27-66, 2002), Theorem 3. 10, p. 39. Our argument may suggest a way to attack the more general problem raised in Etingof et al. (Sel. Math. (N. S.) 8(1):27-66, 2002), Section 3. 4 of EKP-homaloidal polynomials of arbitrary degree. © 2011 Universitat de Barcelona.

On homaloidal polynomial functions of degree 3 and prehomogeneous vector spaces

Sabatino, Pietro
2011

Abstract

In this paper we consider homaloidal polynomial functions f such that their multiplicative Legendre transform f*, defined as in Etingof et al. (Sel. Math. (N. S.) 8(1):27-66, 2002), Section 3. 2 is again polynomial. Following Dolgachev (Michigan Math. J. 48:191-202, 2000), we call such polynomials EKP-homaloidal. We prove that every EKP-homaloidal polynomial function of degree three is a relative invariant of a symmetric prehomogeneous vector space. This provides a complete proof of Etingof et al. (Sel. Math. (N. S.) 8(1):27-66, 2002), Theorem 3. 10, p. 39. Our argument may suggest a way to attack the more general problem raised in Etingof et al. (Sel. Math. (N. S.) 8(1):27-66, 2002), Section 3. 4 of EKP-homaloidal polynomials of arbitrary degree. © 2011 Universitat de Barcelona.
2011
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
Homaloidal polynomial
Jordan algebras
Multiplicative Legendre transform
Prehomogeneous symmetric space
Prehomogeneous vector spaces
Projective geometry
Secant variety
Severi varieties
File in questo prodotto:
File Dimensione Formato  
On_homaloidal_polynomial_functions_of_degree_3_and_prehomogeneous_vector_spaces.pdf

solo utenti autorizzati

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 471.54 kB
Formato Adobe PDF
471.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/522249
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact