Let V be a reduced and irreducible hypersurface of degree k ≧ 3. In this paper we prove that if the singular locus of V consists of δ2 ordinary double points, δ3 ordinary triple points and if δ2+4δ3<(k - 1)2, then any smooth surface contained in V is a complete intersection on V. © Birkhäuser Verlag, Basel, 2005.
Some remarks on factoriality of certain hypersurfaces in $\mathbb{P}^4 $
Sabatino, Pietro
2005
Abstract
Let V be a reduced and irreducible hypersurface of degree k ≧ 3. In this paper we prove that if the singular locus of V consists of δ2 ordinary double points, δ3 ordinary triple points and if δ2+4δ3<(k - 1)2, then any smooth surface contained in V is a complete intersection on V. © Birkhäuser Verlag, Basel, 2005.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
Remarks_on_factoriality.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
82.12 kB
Formato
Adobe PDF
|
82.12 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


