Ferroptosis is a cell death mechanism based on extensive cellular membrane peroxidation, implicated in neurodegenerative and other diseases. The essential oil component γ-terpinene, a natural monoterpene with a unique highly oxidizable pro-aromatic 1,4-cyclohexadiene skeleton, inhibits peroxidation of polyunsaturated lipid in model heterogeneous systems (micelles and liposomes). Upon H-atom abstraction, an unstable γ-terpinene-derived peroxyl radical is formed, that aromatizes to p-cymene generating HOO⋅ radicals. As HOO⋅ are small and hydrophilic radicals, they quickly diffuse outside the lipid core, blocking the radical chain propagation of polyunsaturated lipids. This unprecedented antioxidant “slingshot” mechanism explains why γ-terpinene shows a protective activity against ferroptosis, being effective at submicromolar concentrations in human neuroblastoma (SH-SY5Y) cells.

Pro-aromatic Natural Terpenes as Unusual “Slingshot” Antioxidants with Promising Ferroptosis Inhibition Activity

Baschieri A.;
2024

Abstract

Ferroptosis is a cell death mechanism based on extensive cellular membrane peroxidation, implicated in neurodegenerative and other diseases. The essential oil component γ-terpinene, a natural monoterpene with a unique highly oxidizable pro-aromatic 1,4-cyclohexadiene skeleton, inhibits peroxidation of polyunsaturated lipid in model heterogeneous systems (micelles and liposomes). Upon H-atom abstraction, an unstable γ-terpinene-derived peroxyl radical is formed, that aromatizes to p-cymene generating HOO⋅ radicals. As HOO⋅ are small and hydrophilic radicals, they quickly diffuse outside the lipid core, blocking the radical chain propagation of polyunsaturated lipids. This unprecedented antioxidant “slingshot” mechanism explains why γ-terpinene shows a protective activity against ferroptosis, being effective at submicromolar concentrations in human neuroblastoma (SH-SY5Y) cells.
2024
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
Antioxidant
Essential oils
Ferroptosis
Lipid peroxidation
Superoxide
File in questo prodotto:
File Dimensione Formato  
69_Chem. Eur. J. 2024, 30, e202403320.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/522401
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact