Controlling Vacancies and heterointerfaces of nano/microstuctures is very challenging, importantly, which tailors the electromagnetic (EM) parameters to develop the high-performance electromagnetic wave (EMW) absorbers. Herein, we report a strategy using various sulfur-source modifying Fe3O4 nano- sphere by one-step hydrothermal method to prepare a series of FeS2-based composites. Diverse sulfur sources determine their morphologies, crystal structures and compositions, and further affect EMW absorption abilities. Among these materials, rich sulfur vacancies and abundant heterogeneous interfaces improve their conduction loss and polarization loss caused by a unique concave cubic polyhedrons struc- ture of the Fe3O4/FeS2 composites fabricated by thioacetamide (TAA), which displays the brilliant EMW absorption capacity compared to others. That is, it possesses the minimum reflection loss (RLmin) of —59.27 dB and effective absorption bandwidth (EAB, RL ≤ -10 dB) of 5.86 GHz at the thin thickness of 1.8 mm. This study opens a new avenue for designing the superior EMW absorbers by tunable sulfur vacancy and heterointerface.

Tunable sulfur vacancies and hetero-interfaces of FeS2-based composites for high-efficiency electromagnetic wave absorption

Wang, M;Liotta, LF;
2021

Abstract

Controlling Vacancies and heterointerfaces of nano/microstuctures is very challenging, importantly, which tailors the electromagnetic (EM) parameters to develop the high-performance electromagnetic wave (EMW) absorbers. Herein, we report a strategy using various sulfur-source modifying Fe3O4 nano- sphere by one-step hydrothermal method to prepare a series of FeS2-based composites. Diverse sulfur sources determine their morphologies, crystal structures and compositions, and further affect EMW absorption abilities. Among these materials, rich sulfur vacancies and abundant heterogeneous interfaces improve their conduction loss and polarization loss caused by a unique concave cubic polyhedrons struc- ture of the Fe3O4/FeS2 composites fabricated by thioacetamide (TAA), which displays the brilliant EMW absorption capacity compared to others. That is, it possesses the minimum reflection loss (RLmin) of —59.27 dB and effective absorption bandwidth (EAB, RL ≤ -10 dB) of 5.86 GHz at the thin thickness of 1.8 mm. This study opens a new avenue for designing the superior EMW absorbers by tunable sulfur vacancy and heterointerface.
2021
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
Electromagnetic wave absorption Sulfur vacancy Sulfur-sources Concave cubic polyhedrons Fe3O4/FeS2 composites
File in questo prodotto:
File Dimensione Formato  
LiU_JCIS_2021_Liottan8.pdf

solo utenti autorizzati

Descrizione: Editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 6.63 MB
Formato Adobe PDF
6.63 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/522542
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 74
  • ???jsp.display-item.citation.isi??? 74
social impact