Thermal anomalies detected by Earth observation satellites have been widely used to identify active fires, even though there has been a high percentage of misclassified fire pixels. A total of about 75,000 Fire Radiative Power (FRP) pixels have been spatially and temporally combined with the EFFIS Burned Areas Database, distributed under the Copernicus Emergency Management Service, in order to identify thermal anomaly hotspots misclassified as fire pixels. The proposed approach uses a cluster analysis to partition the FRP pixels dataset into discrete subsets, based on defined distance measures like the spatial distance of the pixel centroids and the temporal frequencies. Later, zonal statistics were performed in order to evaluate fractional land cover within each identified hotspot. Results demonstrate that misclassified large surfaces, like industrial areas, can be identified from both spatial and temporal patterns, while other FRP false alarms are smaller in size.

A Methodological Approach to Identify Thermal Anomaly Hotspots Misclassified as Fire Pixels in Fire Radiative Power (FRP) Products

Filipponi, F.
Primo
;
2024

Abstract

Thermal anomalies detected by Earth observation satellites have been widely used to identify active fires, even though there has been a high percentage of misclassified fire pixels. A total of about 75,000 Fire Radiative Power (FRP) pixels have been spatially and temporally combined with the EFFIS Burned Areas Database, distributed under the Copernicus Emergency Management Service, in order to identify thermal anomaly hotspots misclassified as fire pixels. The proposed approach uses a cluster analysis to partition the FRP pixels dataset into discrete subsets, based on defined distance measures like the spatial distance of the pixel centroids and the temporal frequencies. Later, zonal statistics were performed in order to evaluate fractional land cover within each identified hotspot. Results demonstrate that misclassified large surfaces, like industrial areas, can be identified from both spatial and temporal patterns, while other FRP false alarms are smaller in size.
2024
Istituto di Geologia Ambientale e Geoingegneria - IGAG
wildfires
fire radiative power
thermal anomalies
File in questo prodotto:
File Dimensione Formato  
environsciproc-29-00047.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.9 MB
Formato Adobe PDF
4.9 MB Adobe PDF Visualizza/Apri
environsciproc-2917712-supplementary.pdf

accesso aperto

Descrizione: Supplementary Materials
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 360.47 kB
Formato Adobe PDF
360.47 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/522889
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact