We investigate the c-direction conduction in CrSBr in the linear regime, which is not accessible in other van der Waals (vdW) magnetic semiconductors, because of the unmeasurably low current. The resistivity, which is 108-1011 times larger than in the a and b directions, exhibits magnetic state dependent thermally activated and variable range hopping transport. In the spin-flip phase at 2 T, the activation energy is 20 meV lower than in the antiferromagnetic state due to a downshift of the conduction band edge, in agreement with ab initio calculations. In the variable range hopping regime, the average hopping length decreases from twice the interlayer distance to the interlayer distance at 2 T because in the antiferromagnetic state the large exchange energy impedes electrons hopping between adjacent layers. Our work demonstrates that the linear transport regime provides new information about electronic processes in vdW magnetic semiconductors and shows how magnetism influences these processes both in real and reciprocal space.

Influence of magnetism on vertical hopping transport in CrSBr

Gibertini M.;
2024

Abstract

We investigate the c-direction conduction in CrSBr in the linear regime, which is not accessible in other van der Waals (vdW) magnetic semiconductors, because of the unmeasurably low current. The resistivity, which is 108-1011 times larger than in the a and b directions, exhibits magnetic state dependent thermally activated and variable range hopping transport. In the spin-flip phase at 2 T, the activation energy is 20 meV lower than in the antiferromagnetic state due to a downshift of the conduction band edge, in agreement with ab initio calculations. In the variable range hopping regime, the average hopping length decreases from twice the interlayer distance to the interlayer distance at 2 T because in the antiferromagnetic state the large exchange energy impedes electrons hopping between adjacent layers. Our work demonstrates that the linear transport regime provides new information about electronic processes in vdW magnetic semiconductors and shows how magnetism influences these processes both in real and reciprocal space.
2024
Istituto Nanoscienze - NANO - Sede Secondaria Modena
Istituto Nanoscienze - NANO
2D materials
transport
magnetism
File in questo prodotto:
File Dimensione Formato  
2401.16931v1.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 9.08 MB
Formato Adobe PDF
9.08 MB Adobe PDF Visualizza/Apri
PhysRevResearch.6.013185.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/523092
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact