Tin-based perovskite solar cells offer a less toxic alternative to their lead-based counterparts. Despite their promising optoelectronic properties, their performances still lag behind, with the highest power conversion efficiencies reaching around 15%. This efficiency limitation arises primarily from electronic defects leading to self-p-doping and stereo-chemical activity of the Sn(II) ion, which distorts the atomic arrangement in the material. In this study, we investigate the effect of strontium doping in tin-based perovskite on the distortion of the material’s structure and its optoelectronic properties. Using a combination of Density Functional Theory calculations and experiments, we demonstrate that strontium doping reduces p-doping and structural strain. This approach improves the efficiency from 6.3% in undoped devices to 7.5% in doped devices without relying on dimethyl sulfoxide, a harmful solvent for tin-based perovskites. This method could enable precise control of tin off-centering and self-p-doping, advancing the development of efficient and stable tin perovskite solar cells.

Mitigation of Self-p-Doping and Off-Centering Effect in Tin Perovskite via Strontium Doping

Paola Alippi
Secondo
;
Giuseppe Nasti;Antonio Abate
Ultimo
2024

Abstract

Tin-based perovskite solar cells offer a less toxic alternative to their lead-based counterparts. Despite their promising optoelectronic properties, their performances still lag behind, with the highest power conversion efficiencies reaching around 15%. This efficiency limitation arises primarily from electronic defects leading to self-p-doping and stereo-chemical activity of the Sn(II) ion, which distorts the atomic arrangement in the material. In this study, we investigate the effect of strontium doping in tin-based perovskite on the distortion of the material’s structure and its optoelectronic properties. Using a combination of Density Functional Theory calculations and experiments, we demonstrate that strontium doping reduces p-doping and structural strain. This approach improves the efficiency from 6.3% in undoped devices to 7.5% in doped devices without relying on dimethyl sulfoxide, a harmful solvent for tin-based perovskites. This method could enable precise control of tin off-centering and self-p-doping, advancing the development of efficient and stable tin perovskite solar cells.
2024
Istituto di Struttura della Materia - ISM - Sede Secondaria Montelibretti
Photovoltaics, Ab initio calculations, Hybrid Perovskites, Doping
File in questo prodotto:
File Dimensione Formato  
acsenergylett.4c02974.pdf

accesso aperto

Descrizione: Articolo pubblicato online il 31/12/2024
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 6.17 MB
Formato Adobe PDF
6.17 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/523183
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact