This study reports the effects of post-growth He+ irradiation on the magneto-elastic properties of a Ni/Fe multi-layered stack. The progressive intermixing caused by He+ irradiation at the interfaces of the multilayer allows us to tune the saturation magnetostriction value with increasing He+ fluences and even to induce a reversal of the sign of the magnetostrictive effect. Additionally, the critical fluence at which the absolute value of the magnetostriction is dramatically reduced is identified. Therefore, insensitivity to strain of the magnetic stack is nearly reached, as required for many applications. All the above-mentioned effects are attributed to the combination of the negative saturation magnetostriction of sputtered Ni and Fe layers and the positive magnetostriction of the NixFe1-x alloy at the intermixed interfaces, whose contribution is gradually increased with irradiation. Importantly, the irradiation does not alter the layer polycrystalline structure, confirming that post-growth He+ ion irradiation is an excellent tool to tune the magneto-elastic properties of multilayer samples. An alternative class of spintronic devices can be envisioned with a material treatment able to arbitrary change the magnetostriction with ion-induced "magnetic patterning".

Control of magnetoelastic coupling in Ni/Fe multilayers using He+ ion irradiation

Lamperti, A.;
2022

Abstract

This study reports the effects of post-growth He+ irradiation on the magneto-elastic properties of a Ni/Fe multi-layered stack. The progressive intermixing caused by He+ irradiation at the interfaces of the multilayer allows us to tune the saturation magnetostriction value with increasing He+ fluences and even to induce a reversal of the sign of the magnetostrictive effect. Additionally, the critical fluence at which the absolute value of the magnetostriction is dramatically reduced is identified. Therefore, insensitivity to strain of the magnetic stack is nearly reached, as required for many applications. All the above-mentioned effects are attributed to the combination of the negative saturation magnetostriction of sputtered Ni and Fe layers and the positive magnetostriction of the NixFe1-x alloy at the intermixed interfaces, whose contribution is gradually increased with irradiation. Importantly, the irradiation does not alter the layer polycrystalline structure, confirming that post-growth He+ ion irradiation is an excellent tool to tune the magneto-elastic properties of multilayer samples. An alternative class of spintronic devices can be envisioned with a material treatment able to arbitrary change the magnetostriction with ion-induced "magnetic patterning".
2022
Istituto per la Microelettronica e Microsistemi - IMM - Sede Secondaria Agrate Brianza
magnetoelastic coupling
Ni/Fe multilayers
ToF-SIMS depth profiles
He+ ion irradiation
File in questo prodotto:
File Dimensione Formato  
2022_Masciocchi_APL_121_182401_ToF-SIMS_Ni-Fe_multilayers.pdf

Open Access dal 09/10/2023

Tipologia: Versione Editoriale (PDF)
Licenza: Altro tipo di licenza
Dimensione 2.49 MB
Formato Adobe PDF
2.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/523287
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact