We have experimentally observed the biaxial switching between two topologically distinct textures of a nematic liquid crystal cell submitted to a strong electric field. The effect is deduced from optical and electrical measurements across the cell. Above a static threshold, a bulk order reconstruction is observed, where the final nematic orientation in the centre becomes perpendicular to its initial one, inducing a total ? change of orientation across the cell. Using short electric field pulses, a higher dynamical threshold is observed. These experiments are explained by a Landau-de Gennes-Khalatnikov model. The threshold implies the local exchange of two eigenvalues of the nematic order tensor through intermediate biaxial states. The onset of the effect in a thin splay-bend wall decreases the static threshold by almost an order of magnitude. The model explains reasonably well the static and dynamic measurements within the present description of nematic biaxiality.

Electric field induced order reconstruction in a nematic cell

Ciuchi F;
2004

Abstract

We have experimentally observed the biaxial switching between two topologically distinct textures of a nematic liquid crystal cell submitted to a strong electric field. The effect is deduced from optical and electrical measurements across the cell. Above a static threshold, a bulk order reconstruction is observed, where the final nematic orientation in the centre becomes perpendicular to its initial one, inducing a total ? change of orientation across the cell. Using short electric field pulses, a higher dynamical threshold is observed. These experiments are explained by a Landau-de Gennes-Khalatnikov model. The threshold implies the local exchange of two eigenvalues of the nematic order tensor through intermediate biaxial states. The onset of the effect in a thin splay-bend wall decreases the static threshold by almost an order of magnitude. The model explains reasonably well the static and dynamic measurements within the present description of nematic biaxiality.
2004
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Orientational order of liquid crystals; electric and magnetic field effects on order ; Defects in liquid crystals
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/52330
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 70
social impact