The Pleiades Volcanic Field is made up of some 20 monogenetic, partly overlapping scoria and spatter cones, erupted in the last 900 ka, cropping out from the ice close to the head of the Mariner Glacier in northern Victoria Land, Antarctica. Erupted products vary from hawaiite to trachyte, defining a complete mild Na-alkaline differentiation trend. Mafic samples are characterized by multi-elemental patterns typical of OIB magmas, moderately low 87Sr/86Sr (0.7037) and high 143Nd/144Nd (0.51284), with a clear within-plate affinity, indicating a subcontinental lithospheric source. With increasing SiO2, 87Sr/86Sr ratios increase up to 0.7052 and 143Nd/144Nd decrease to 0.51277, supporting the hypothesis of open-system evolution, with significant crustal assimilation during fractional crystallization. The erupted volume of most evolved products (∼7 km3), according to fractionation models, suggests that primitive magmas should have been more than 10 times larger, indicating the occurrence of a large magma plumbing system, unexpected for a volcanic field of monogenetic scoria cones. The occurrence of a complete fractionation trend with large magma chambers and large assimilation rate is unusual, if not unique, among the alkali basaltic volcanic fields and it is matched by a climax of activity during the last glacial maximum (30 ka), as indicated by new 40Ar-39Ar ages (30 ± 3 ka and 25 ± 2 ka) for samples from the two most prominent edifices. Therefore, we hypothesize a role of a thick ice cap in suppressing eruptions and ultimately leading to prolonged magma residence time in the subsurface, favoring significant fractionation coupled with unusual high rates of crustal assimilation.

Magma Differentiation, Contamination/Mixing and Eruption Modulated by Glacial Load—The Volcanic Complex of The Pleiades, Antarctica

Agostini S.
;
2024

Abstract

The Pleiades Volcanic Field is made up of some 20 monogenetic, partly overlapping scoria and spatter cones, erupted in the last 900 ka, cropping out from the ice close to the head of the Mariner Glacier in northern Victoria Land, Antarctica. Erupted products vary from hawaiite to trachyte, defining a complete mild Na-alkaline differentiation trend. Mafic samples are characterized by multi-elemental patterns typical of OIB magmas, moderately low 87Sr/86Sr (0.7037) and high 143Nd/144Nd (0.51284), with a clear within-plate affinity, indicating a subcontinental lithospheric source. With increasing SiO2, 87Sr/86Sr ratios increase up to 0.7052 and 143Nd/144Nd decrease to 0.51277, supporting the hypothesis of open-system evolution, with significant crustal assimilation during fractional crystallization. The erupted volume of most evolved products (∼7 km3), according to fractionation models, suggests that primitive magmas should have been more than 10 times larger, indicating the occurrence of a large magma plumbing system, unexpected for a volcanic field of monogenetic scoria cones. The occurrence of a complete fractionation trend with large magma chambers and large assimilation rate is unusual, if not unique, among the alkali basaltic volcanic fields and it is matched by a climax of activity during the last glacial maximum (30 ka), as indicated by new 40Ar-39Ar ages (30 ± 3 ka and 25 ± 2 ka) for samples from the two most prominent edifices. Therefore, we hypothesize a role of a thick ice cap in suppressing eruptions and ultimately leading to prolonged magma residence time in the subsurface, favoring significant fractionation coupled with unusual high rates of crustal assimilation.
2024
Istituto di Geoscienze e Georisorse - IGG - Sede Pisa
Antarctica,
climate change,
geochemistry,
petrology,
Pleiades volcanic field,
volcanology
File in questo prodotto:
File Dimensione Formato  
AgostiniPleaidesG3_2024.pdf

accesso aperto

Descrizione: Magma differentiation, contamination/mixing and eruption modulated by glacial load-the volcanic complex of the Pleiades, Antarctica
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 6.83 MB
Formato Adobe PDF
6.83 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/523488
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact