We present for the first time a nonaqueous sol-gel route to produce ultrasmall (<2 nm) magnetic bimetallic CoPt3 nanoparticles (NPs). The one-pot procedure is carried out at low temperature (180 °C) using benzyl alcohol, acting as both reducing agent and solvent. The highly monodisperse CoPt3 NPs were investigated with innovative advanced X-ray methods (whole powder pattern modeling), HR-STEM, XPS, and SQUID magnetometry. XPS showed Co was mostly in metallic form, but with a very small amount of CoO on the NP surface. The spherical NPs had an ultrasmall diameter of 1.6 nm and could self-assemble in aligned linear chains, or nanobelts, of single NPs. They are superparamagnetic, with blocking temperature of ∼20 K and coercivity at 10 K of 27.9 kA m-1 (∼350 Oe). However, there is evidence of a second magnetic phase (probably CoO) in the ZFC magnetization curve, which enhances their magnetization values, without significantly affecting their superparamagnetism.

Smallest Bimetallic CoPt3 Superparamagnetic Nanoparticles

Tobaldi, David M.;
2016

Abstract

We present for the first time a nonaqueous sol-gel route to produce ultrasmall (<2 nm) magnetic bimetallic CoPt3 nanoparticles (NPs). The one-pot procedure is carried out at low temperature (180 °C) using benzyl alcohol, acting as both reducing agent and solvent. The highly monodisperse CoPt3 NPs were investigated with innovative advanced X-ray methods (whole powder pattern modeling), HR-STEM, XPS, and SQUID magnetometry. XPS showed Co was mostly in metallic form, but with a very small amount of CoO on the NP surface. The spherical NPs had an ultrasmall diameter of 1.6 nm and could self-assemble in aligned linear chains, or nanobelts, of single NPs. They are superparamagnetic, with blocking temperature of ∼20 K and coercivity at 10 K of 27.9 kA m-1 (∼350 Oe). However, there is evidence of a second magnetic phase (probably CoO) in the ZFC magnetization curve, which enhances their magnetization values, without significantly affecting their superparamagnetism.
2016
Istituto di Nanotecnologia - NANOTEC - Sede Lecce
Magnetic Properties
Nonaqueous sol–gel route
Bimetallic CoPt3 nanoparticles
File in questo prodotto:
File Dimensione Formato  
2016_JPhysChemLett.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Altro tipo di licenza
Dimensione 2.76 MB
Formato Adobe PDF
2.76 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/523589
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact