This paper deals with the efficient and accurate computation of extracellular potentials in a simplified model of myocardial tissue. The electrical activity of the heart is characterized by a narrow wavefront spreading through the myocardium. To increase the accuracy of the computation, a non-conforming non-overlapping domain decomposition based on the mortar method is used, allowing adaptivity in the regions closed to the wavefront. The benefits of the adaptive grid refinement process are illustrated by numerical results that show how the method works and its efficiency if compared to the classical conforming Finite Element Method.
The mortar finite element method for the cardiac bidomain model of extracellular potential
M Pennacchio
2004
Abstract
This paper deals with the efficient and accurate computation of extracellular potentials in a simplified model of myocardial tissue. The electrical activity of the heart is characterized by a narrow wavefront spreading through the myocardium. To increase the accuracy of the computation, a non-conforming non-overlapping domain decomposition based on the mortar method is used, allowing adaptivity in the regions closed to the wavefront. The benefits of the adaptive grid refinement process are illustrated by numerical results that show how the method works and its efficiency if compared to the classical conforming Finite Element Method.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_31127-doc_5427.pdf
solo utenti autorizzati
Descrizione: Articolo pubblicato su rivista
Dimensione
1.27 MB
Formato
Adobe PDF
|
1.27 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


