A radially periodic 2-D leaky-wave (LW) antenna is studied for the generation of zeroth-order Bessel beams within a limited spatial region and over a wide-frequency range. The antenna design is wideband and based on an annular metal strip grating placed on the top of a grounded dielectric slab, supporting a cylindrical leaky wave (CLW) with a fast backward spatial harmonic. The focusing capabilities of the relevant LW aperture fields are investigated over the considered frequency range (15-21 GHz), in conjunction with the dispersion analysis of the optimized structure, which is developed by means of an efficient in-house method of moments code. Full-wave simulations using a commercial tool including a simple coaxial feeder are presented and discussed, demonstrating the desired wideband operation. The antenna design is validated by means of measurements performed on a manufactured prototype, considering different frequencies and components of the electric field within the nondiffracting range of the system. The proposed design represents an attractive simple and low-cost solution potentially able to generate arbitrary-order Bessel beams at microwaves as well as in the millimeter-wave and terahertz frequency regions.
Radially Periodic Leaky-Wave Antenna for Bessel Beam Generation over a Wide-Frequency Range
Fuscaldo W.Secondo
;
2018
Abstract
A radially periodic 2-D leaky-wave (LW) antenna is studied for the generation of zeroth-order Bessel beams within a limited spatial region and over a wide-frequency range. The antenna design is wideband and based on an annular metal strip grating placed on the top of a grounded dielectric slab, supporting a cylindrical leaky wave (CLW) with a fast backward spatial harmonic. The focusing capabilities of the relevant LW aperture fields are investigated over the considered frequency range (15-21 GHz), in conjunction with the dispersion analysis of the optimized structure, which is developed by means of an efficient in-house method of moments code. Full-wave simulations using a commercial tool including a simple coaxial feeder are presented and discussed, demonstrating the desired wideband operation. The antenna design is validated by means of measurements performed on a manufactured prototype, considering different frequencies and components of the electric field within the nondiffracting range of the system. The proposed design represents an attractive simple and low-cost solution potentially able to generate arbitrary-order Bessel beams at microwaves as well as in the millimeter-wave and terahertz frequency regions.File | Dimensione | Formato | |
---|---|---|---|
Comite_TAP2018_BB_RPLWAs.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
4.66 MB
Formato
Adobe PDF
|
4.66 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.