We analyze the local accuracy of the virtual element method. More precisely, we prove an error bound similar to the one holding for the finite element method, namely, that the local $$H^1$$ H 1 error in a interior subdomain is bounded by a term behaving like the best approximation allowed by the local smoothness of the solution in a larger interior subdomain plus the global error measured in a negative norm.
Interior estimates for the virtual element method
Silvia Bertoluzza;Micol Pennacchio;Daniele Prada
2024
Abstract
We analyze the local accuracy of the virtual element method. More precisely, we prove an error bound similar to the one holding for the finite element method, namely, that the local $$H^1$$ H 1 error in a interior subdomain is bounded by a term behaving like the best approximation allowed by the local smoothness of the solution in a larger interior subdomain plus the global error measured in a negative norm.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s00211-024-01408-9.pdf
accesso aperto
Descrizione: Interior estimates for the virtual element method
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.51 MB
Formato
Adobe PDF
|
1.51 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.