We analyze the local accuracy of the virtual element method. More precisely, we prove an error bound similar to the one holding for the finite element method, namely, that the local $$H^1$$ H 1 error in a interior subdomain is bounded by a term behaving like the best approximation allowed by the local smoothness of the solution in a larger interior subdomain plus the global error measured in a negative norm.

Interior estimates for the virtual element method

Silvia Bertoluzza;Micol Pennacchio;Daniele Prada
2024

Abstract

We analyze the local accuracy of the virtual element method. More precisely, we prove an error bound similar to the one holding for the finite element method, namely, that the local $$H^1$$ H 1 error in a interior subdomain is bounded by a term behaving like the best approximation allowed by the local smoothness of the solution in a larger interior subdomain plus the global error measured in a negative norm.
2024
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Virtual element method, interior estimates
File in questo prodotto:
File Dimensione Formato  
s00211-024-01408-9.pdf

accesso aperto

Descrizione: Interior estimates for the virtual element method
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/523822
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact