Different configurations of leaky-wave antennas (LWAs) based on graphene metasurfaces are studied. The electronic properties of a graphene metasurface in the low THz range are investigated in details in order to discuss the reconfigurability features of the presented structures. Simple exact formulas for evaluating the ohmic losses related to the surface plasmon polariton (SPP) propagation along a suspended graphene sheet, and the relevant figures of merit of SPP propagating over a generic metasurface are given. Such formulas allow us to explain the low efficiency of reconfigurable antennas based on SPPs along graphene metasurfaces. Then, the radiative performance and relevant losses of graphene Fabry-Perot cavity antennas (FPCAs) based on non-plasmonic leaky waves (LWs) are investigated and compared with previous solutions based on SPPs. In particular, a single-layer structure, i.e. a grounded dielectric slab covered with a graphene metasurface, and a multilayered structure, i.e. a substrate-superstrate antenna in which the graphene metasurface is embedded at a suitable position within the substrate, are considered in detail. The results show that the proposed LW solutions in graphene FPCAs allow for considerably reducing the ohmic losses, thus significantly improving the efficiency of the proposed radiators.

Efficient 2-D leaky-wave antenna configurations based on graphene metasurfaces

Fuscaldo W.
Primo
;
2017

Abstract

Different configurations of leaky-wave antennas (LWAs) based on graphene metasurfaces are studied. The electronic properties of a graphene metasurface in the low THz range are investigated in details in order to discuss the reconfigurability features of the presented structures. Simple exact formulas for evaluating the ohmic losses related to the surface plasmon polariton (SPP) propagation along a suspended graphene sheet, and the relevant figures of merit of SPP propagating over a generic metasurface are given. Such formulas allow us to explain the low efficiency of reconfigurable antennas based on SPPs along graphene metasurfaces. Then, the radiative performance and relevant losses of graphene Fabry-Perot cavity antennas (FPCAs) based on non-plasmonic leaky waves (LWs) are investigated and compared with previous solutions based on SPPs. In particular, a single-layer structure, i.e. a grounded dielectric slab covered with a graphene metasurface, and a multilayered structure, i.e. a substrate-superstrate antenna in which the graphene metasurface is embedded at a suitable position within the substrate, are considered in detail. The results show that the proposed LW solutions in graphene FPCAs allow for considerably reducing the ohmic losses, thus significantly improving the efficiency of the proposed radiators.
2017
Istituto per la Microelettronica e Microsistemi - IMM - Sede Secondaria Roma
Antenna design
Leaky-wave antennas
Modeling and measurements
New and emerging technologies and materials
File in questo prodotto:
File Dimensione Formato  
Fuscaldo_IJMWT2017_Graphene.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 748.12 kB
Formato Adobe PDF
748.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/523867
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 48
social impact