The paper under review considers the Kac equation, which is an analog of the Boltzmann equation for Maxwell molecules in dimension one, and thus describes the evolution of the velocity distribution in a sort of one-dimensional gas. This equation is known to admit an explicit solution, in terms of a series, known as the Wild sums. The authors investigate the speed of convergence of this series. McKean gave a probabilistic interpretation of the Wild sums in terms of graphs. Using this interpretation, E. A. Carlen, M. C. V. Carvalho and E. Gabetta [J. Funct. Anal. 220 (2005)] showed that the error made when the series is truncated at the n-th stage is bounded from above by a(n^(?+?)), for some constant a, and where ? is the least negative eigenvalue of the linearized collision operator. In the present paper, the authors show that ? can be removed from the previous estimate. The proofs rely on a fine study of the probability distribution of the depth of a leaf in a McKean random tree.

Some new results for McKean's graphs with applications to Kac's equation

Regazzini E
2006

Abstract

The paper under review considers the Kac equation, which is an analog of the Boltzmann equation for Maxwell molecules in dimension one, and thus describes the evolution of the velocity distribution in a sort of one-dimensional gas. This equation is known to admit an explicit solution, in terms of a series, known as the Wild sums. The authors investigate the speed of convergence of this series. McKean gave a probabilistic interpretation of the Wild sums in terms of graphs. Using this interpretation, E. A. Carlen, M. C. V. Carvalho and E. Gabetta [J. Funct. Anal. 220 (2005)] showed that the error made when the series is truncated at the n-th stage is bounded from above by a(n^(?+?)), for some constant a, and where ? is the least negative eigenvalue of the linearized collision operator. In the present paper, the authors show that ? can be removed from the previous estimate. The proofs rely on a fine study of the probability distribution of the depth of a leaf in a McKean random tree.
2006
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Depth of a leaf
Kac's equation
MKean binary tree
rate of convergence of Wild sums
Wild convolution
File in questo prodotto:
File Dimensione Formato  
prod_31176-doc_25828.pdf

non disponibili

Descrizione: Articolo Pubblicato
Dimensione 339.1 kB
Formato Adobe PDF
339.1 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/52397
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 16
social impact