All-dielectric metasurfaces are a blooming field with a wide range of new applications spanning from enhanced imaging to structural color, holography, planar sensors, and directionality scattering. These devices are nanopatterned structures of sub-wavelength dimensions whose optical behavior (absorption, reflection, and transmission) is determined by the dielectric composition, dimensions, and environment. However, the functionality of these metasurfaces is fixed at the fabrication step by the geometry and optical properties of the dielectric materials, limiting their potential as active reconfigurable devices. Herein, a reconfigurable all-dielectric metasurface based on two high refractive index (HRI) materials like silicon (Si) and the phase-change chalcogenide antimony triselenide (Sb2Se3) for the control of scattered light is proposed. It consists of a 2D array of Si–Sb2Se3–Si sandwich disks embedded in a SiO2 matrix. The tunability of the device is provided through the amorphous-to-crystalline transition of Sb2Se3. We demonstrate that in the Sb2Se3 amorphous state, all the light can be transmitted, as it is verified using the zero-backward condition, while in the crystalline phase most of the light is reflected due to a resonance whose origin is the contribution of the electric (ED) and magnetic (MD) dipoles and the anapole (AP) of the nanodisks. By this configuration, a contrast in transmission (ΔT) of 0.81 at a wavelength of 980 nm by governing the phase of Sb2Se3 can be achieved.

Directional Scattering Switching from an All-Dielectric Phase Change Metasurface

Losurdo, Maria;Moreno, Fernando
;
Gutierrez, Yael
2023

Abstract

All-dielectric metasurfaces are a blooming field with a wide range of new applications spanning from enhanced imaging to structural color, holography, planar sensors, and directionality scattering. These devices are nanopatterned structures of sub-wavelength dimensions whose optical behavior (absorption, reflection, and transmission) is determined by the dielectric composition, dimensions, and environment. However, the functionality of these metasurfaces is fixed at the fabrication step by the geometry and optical properties of the dielectric materials, limiting their potential as active reconfigurable devices. Herein, a reconfigurable all-dielectric metasurface based on two high refractive index (HRI) materials like silicon (Si) and the phase-change chalcogenide antimony triselenide (Sb2Se3) for the control of scattered light is proposed. It consists of a 2D array of Si–Sb2Se3–Si sandwich disks embedded in a SiO2 matrix. The tunability of the device is provided through the amorphous-to-crystalline transition of Sb2Se3. We demonstrate that in the Sb2Se3 amorphous state, all the light can be transmitted, as it is verified using the zero-backward condition, while in the crystalline phase most of the light is reflected due to a resonance whose origin is the contribution of the electric (ED) and magnetic (MD) dipoles and the anapole (AP) of the nanodisks. By this configuration, a contrast in transmission (ΔT) of 0.81 at a wavelength of 980 nm by governing the phase of Sb2Se3 can be achieved.
2023
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
antimony triselenide
contrast
control
directionality
metasurface
phase-change material
reconfigurable
zero-backward
File in questo prodotto:
File Dimensione Formato  
2023 - Santos et al - Directional Scattering Switching...[Losurdo].pdf

accesso aperto

Descrizione: Paper
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.95 MB
Formato Adobe PDF
1.95 MB Adobe PDF Visualizza/Apri
2023 - Santos et al - Directional Scattering Switching...[Losurdo]_SupplementaryMaterial.pdf

accesso aperto

Descrizione: Supplementary material
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 624.04 kB
Formato Adobe PDF
624.04 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/524041
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact