Nowadays, endocrine-disrupting chemicals are recognized as among the most dangerous compounds for marine life and human health as well. Here, we present the use of commercially available MnO2 microparticles as self-propelled micromotors for on-the-fly photocatalytic degradation and removal of the β-estradiol hormone due to the micromotors’ self-propulsion ability and photoactivity. Effective removal of the contaminant is demonstrated without any external stirring showing a degradation efficiency of 72%, significantly higher than static MnO2 microparticles (27%). In particular, adsorption and photocatalytic processes were here exploited separately to evaluate the specific contribution of the motion toward the overall β-estradiol removal effect from the water. This study presents an effective alternative to conventional water purification in removing hormones and a starting point for future improvements on adsorption and photocatalytic abilities of micro- and nanomotors toward emerging organic pollutants in water.

Autonomous self-propelled MnO2 micromotors for hormones removal and degradation

Ussia M.
Secondo
Conceptualization
;
2022

Abstract

Nowadays, endocrine-disrupting chemicals are recognized as among the most dangerous compounds for marine life and human health as well. Here, we present the use of commercially available MnO2 microparticles as self-propelled micromotors for on-the-fly photocatalytic degradation and removal of the β-estradiol hormone due to the micromotors’ self-propulsion ability and photoactivity. Effective removal of the contaminant is demonstrated without any external stirring showing a degradation efficiency of 72%, significantly higher than static MnO2 microparticles (27%). In particular, adsorption and photocatalytic processes were here exploited separately to evaluate the specific contribution of the motion toward the overall β-estradiol removal effect from the water. This study presents an effective alternative to conventional water purification in removing hormones and a starting point for future improvements on adsorption and photocatalytic abilities of micro- and nanomotors toward emerging organic pollutants in water.
2022
Istituto per la Microelettronica e Microsistemi - IMM
Adsorption
Hormone
Micromotors
MnO2
Photodegradation
Pollutant removal
UV-light
β-Estradiol
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2352940721003759-main.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 820.12 kB
Formato Adobe PDF
820.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/524142
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact