Orienteering or itinerary planning algorithms in tourism are used to optimize travel routes by considering user preference and other constraints, such as time budget or traffic conditions. For these algorithms, it is essential to explore the user preference to predict potential points of interest (POIs) or tourist routes. However, nowadays, user preference has been significantly affected by COVID-19, since health concern plays a key tradeoff role. For example, people may try to avoid crowdedness, even if there is a strong desire for social interaction. Thus, the orienteering or itinerary planning algorithms should optimize routes beyond user preference. Therefore, this article proposes a social sensing system that considers the tradeoff between user preference and various factors, such as crowdedness, personality, knowledge of COVID-19, POI features, and desire for socialization. The experiments are conducted on profiling user interests with a properly 1 trained fastText neural network and a set of specialized Naïve Bayesian Classifiers based on the “Yelp!” dataset. Also, we demonstrate how to approach and integrate COVID-related factors via conversational agents. Furthermore, the proposed system is in a modular design and evaluated in a user study; thus, it can be efficiently adapted to different algorithms for COVID-19-aware itinerary planning.

A Modular Social Sensing System for Personalized Orienteering in the COVID-19 Era

Pilato G.;
2023

Abstract

Orienteering or itinerary planning algorithms in tourism are used to optimize travel routes by considering user preference and other constraints, such as time budget or traffic conditions. For these algorithms, it is essential to explore the user preference to predict potential points of interest (POIs) or tourist routes. However, nowadays, user preference has been significantly affected by COVID-19, since health concern plays a key tradeoff role. For example, people may try to avoid crowdedness, even if there is a strong desire for social interaction. Thus, the orienteering or itinerary planning algorithms should optimize routes beyond user preference. Therefore, this article proposes a social sensing system that considers the tradeoff between user preference and various factors, such as crowdedness, personality, knowledge of COVID-19, POI features, and desire for socialization. The experiments are conducted on profiling user interests with a properly 1 trained fastText neural network and a set of specialized Naïve Bayesian Classifiers based on the “Yelp!” dataset. Also, we demonstrate how to approach and integrate COVID-related factors via conversational agents. Furthermore, the proposed system is in a modular design and evaluated in a user study; thus, it can be efficiently adapted to different algorithms for COVID-19-aware itinerary planning.
2023
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR - Sede Secondaria Palermo
COVID-19
itinerary planning
orienteering
personalization
social sensing
File in questo prodotto:
File Dimensione Formato  
3615359.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Altro tipo di licenza
Dimensione 4.59 MB
Formato Adobe PDF
4.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/524170
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 3
social impact