All-dielectric metasurfaces have attracted increasing attention due to their negligible losses and sharper resonances compared to their metallic counterparts. In this work, we numerically studied the optical performance of a novel alldielectric metasurface based on complementary split-ring resonators (CSRRs), in which ultrathin slots were periodically etched in a thin silicon layer. The proposed CSRR metasurface exhibits two multipolar resonances in the near-infrared (NIR) window. Moreover, a quasi-bound state in the continuum (quasi-BIC) with an ultra-high quality factor can be excited by breaking the symmetry of the structure. Taking advantage of the high-quality factor quasi-BIC mode and its sensitivity to the superstrate medium refractive index (S = resn), we design an ultra-high figure of merit (FoM = S/FWHM) refractive index sensor for biomedical applications. By three-dimensional finite element method (3D-FEM), we evaluate the sensitivity of the sensing device to the variation of the superstrate refractive index in the range 1.31-1.33, which is typical for aqueous solutions. Our simulations reveal that a sensitivity of S 155 nm RIU-1 and an extraordinary FoM 387500 RIU-1 can be achieved using the ultra-narrow quasi-BIC resonance in the CSRR metasurface structure. The proposed approach opens new paths to develop flat biochemical sensors with high accuracy and real-time performance.
Refractive index sensing by all-dielectric metasurfaces supporting quasi-bound states in the continuum
Zografopoulos D.;
2022
Abstract
All-dielectric metasurfaces have attracted increasing attention due to their negligible losses and sharper resonances compared to their metallic counterparts. In this work, we numerically studied the optical performance of a novel alldielectric metasurface based on complementary split-ring resonators (CSRRs), in which ultrathin slots were periodically etched in a thin silicon layer. The proposed CSRR metasurface exhibits two multipolar resonances in the near-infrared (NIR) window. Moreover, a quasi-bound state in the continuum (quasi-BIC) with an ultra-high quality factor can be excited by breaking the symmetry of the structure. Taking advantage of the high-quality factor quasi-BIC mode and its sensitivity to the superstrate medium refractive index (S = resn), we design an ultra-high figure of merit (FoM = S/FWHM) refractive index sensor for biomedical applications. By three-dimensional finite element method (3D-FEM), we evaluate the sensitivity of the sensing device to the variation of the superstrate refractive index in the range 1.31-1.33, which is typical for aqueous solutions. Our simulations reveal that a sensitivity of S 155 nm RIU-1 and an extraordinary FoM 387500 RIU-1 can be achieved using the ultra-narrow quasi-BIC resonance in the CSRR metasurface structure. The proposed approach opens new paths to develop flat biochemical sensors with high accuracy and real-time performance.| File | Dimensione | Formato | |
|---|---|---|---|
|
SPIE Ph West.pdf
solo utenti autorizzati
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
535.44 kB
Formato
Adobe PDF
|
535.44 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


