Topology enters in quantum field theory (qft) in multiple forms: one of the most important, in non-abelian gauge theories, being in the identification of the θ vacuum in QCD. A very relevant aspect of this connection is through the phenomenon of chiral and conformal qft anomalies. It has been realized that a class of materials, comprising topological insulators and Weyl semimetals, also exhibit the phenomenon of anomalies, which are responsible for several exotic phenomena, such as the presence of edge currents, resilient under perturbations and scattering by impurities. Another example comes from the response functions of these materials under thermal and mechanical stresses, that may be performed using correlation functions of stress energy tensors in General Relativity. In this case the conformal anomaly plays an important role. We briefly illustrate some salient features of this correspondence, and the effective action describing the long-range interactions that may account for such topological effects.

Quantum Field Theory and its Anomalies for Topological Matter

Stefania D'Agostino
Ultimo
2022

Abstract

Topology enters in quantum field theory (qft) in multiple forms: one of the most important, in non-abelian gauge theories, being in the identification of the θ vacuum in QCD. A very relevant aspect of this connection is through the phenomenon of chiral and conformal qft anomalies. It has been realized that a class of materials, comprising topological insulators and Weyl semimetals, also exhibit the phenomenon of anomalies, which are responsible for several exotic phenomena, such as the presence of edge currents, resilient under perturbations and scattering by impurities. Another example comes from the response functions of these materials under thermal and mechanical stresses, that may be performed using correlation functions of stress energy tensors in General Relativity. In this case the conformal anomaly plays an important role. We briefly illustrate some salient features of this correspondence, and the effective action describing the long-range interactions that may account for such topological effects.
2022
Istituto di Nanotecnologia - NANOTEC - Sede Lecce
Quantum Field Theory
Topological Matter
File in questo prodotto:
File Dimensione Formato  
epjconf_qcd@work2022_00026.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 178.87 kB
Formato Adobe PDF
178.87 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/524480
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact