Deidentifying MRIs constitutes an imperative challenge, as it aims at precluding the possibility of re-identification of a research subject or patient, but at the same time it should preserve as much geometrical information as possible, in order to maximize data reusability and to facilitate interoperability. Although several deidentification methods exist, no comprehensive and comparative evaluation of deidentification performance has been carried out across them. Moreover, the possible ways these methods can compromise subsequent analysis has not been exhaustively tested. To tackle these issues, we developed AnonyMI, a novel MRI deidentification method, implemented as a user-friendly 3D Slicer plugin-in, which aims at providing a balance between identity protection and geometrical preservation. To test these features, we performed two series of analyses on which we compared AnonyMI to other two state-of-the-art methods, to evaluate, at the same time, how efficient they are at deidentifying MRIs and how much they affect subsequent analyses, with particular emphasis on source localization procedures. Our results show that all three methods significantly reduce the re-identification risk but AnonyMI provides the best geometrical conservation. Notably, it also offers several technical advantages such as a user-friendly interface, multiple input–output capabilities, the possibility of being tailored to specific needs, batch processing and efficient visualization for quality assurance.

A comparative study between state-of-the-art MRI deidentification and AnonyMI, a new method combining re-identification risk reduction and geometrical preservation

d'Orio P.;Avanzini P.;
2021

Abstract

Deidentifying MRIs constitutes an imperative challenge, as it aims at precluding the possibility of re-identification of a research subject or patient, but at the same time it should preserve as much geometrical information as possible, in order to maximize data reusability and to facilitate interoperability. Although several deidentification methods exist, no comprehensive and comparative evaluation of deidentification performance has been carried out across them. Moreover, the possible ways these methods can compromise subsequent analysis has not been exhaustively tested. To tackle these issues, we developed AnonyMI, a novel MRI deidentification method, implemented as a user-friendly 3D Slicer plugin-in, which aims at providing a balance between identity protection and geometrical preservation. To test these features, we performed two series of analyses on which we compared AnonyMI to other two state-of-the-art methods, to evaluate, at the same time, how efficient they are at deidentifying MRIs and how much they affect subsequent analyses, with particular emphasis on source localization procedures. Our results show that all three methods significantly reduce the re-identification risk but AnonyMI provides the best geometrical conservation. Notably, it also offers several technical advantages such as a user-friendly interface, multiple input–output capabilities, the possibility of being tailored to specific needs, batch processing and efficient visualization for quality assurance.
2021
Istituto di Neuroscienze - IN - Sede Secondaria Parma
data sharing
geometrical preservation
MRI deidentification
privacy
File in questo prodotto:
File Dimensione Formato  
Mikulan et al. - 2021 - A comparative study between state‐of‐the‐art span.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.65 MB
Formato Adobe PDF
2.65 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/524570
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 13
social impact