Improving the barrier properties of bio-based polymers is very desirable for food packaging applications. With this in mind, a gas barrier thin film comprised of graphene oxide (GO), montmorillonite (MMT) clay, and chitosan (CH) was prepared using layer-by-layer assembly. A 120 nm thick CH/MMT/CH/GO quadlayer nanocoating reduces the oxygen permeability of a 179 μm polyethylene terephthalate sheet from 17.6×10−16 to 0.21×10−16 cm3 cm cm−2 s−1 Pa−1 at 0 % RH, and from 13.4×10−16 to 0.42×10−16 cm3 cm cm−2 s−1 Pa−1 at 90 % RH. This two orders of magnitude reduction in permeability in both dry and high humid conditions is caused by the hybrid multilayer structure, with a high loading of oriented, densely packed nanoplatelets. This study demonstrates the potential of combining different anionic nanoplatelets in the assembled nanocoatings to improve the gas barrier performance of chitosan at high humidity.

High gas barrier of clay/graphene oxide/chitosan multilayer nanocoatings at high humidity

Cabrini A.;Cerruti P.;Gentile G.;Lavorgna M.;
2025

Abstract

Improving the barrier properties of bio-based polymers is very desirable for food packaging applications. With this in mind, a gas barrier thin film comprised of graphene oxide (GO), montmorillonite (MMT) clay, and chitosan (CH) was prepared using layer-by-layer assembly. A 120 nm thick CH/MMT/CH/GO quadlayer nanocoating reduces the oxygen permeability of a 179 μm polyethylene terephthalate sheet from 17.6×10−16 to 0.21×10−16 cm3 cm cm−2 s−1 Pa−1 at 0 % RH, and from 13.4×10−16 to 0.42×10−16 cm3 cm cm−2 s−1 Pa−1 at 90 % RH. This two orders of magnitude reduction in permeability in both dry and high humid conditions is caused by the hybrid multilayer structure, with a high loading of oriented, densely packed nanoplatelets. This study demonstrates the potential of combining different anionic nanoplatelets in the assembled nanocoatings to improve the gas barrier performance of chitosan at high humidity.
2025
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
Chitosan
Graphene oxide
Layer-by-layer assembly
Montmorillonite
Oxygen transmission rate
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0300944024007215-main.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.51 MB
Formato Adobe PDF
4.51 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Manuscript_Hybrid_MMTGO.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 1.74 MB
Formato Adobe PDF
1.74 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/524687
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact