Recently, the quest for high-Tc superconductors has evolved from the trial-and-error methodology to the growth of nanostructured artificial high-Tc superlattices (AHTSs) with tailor-made superconducting functional properties by quantum design. Here, we report the growth by molecular beam epitaxy (MBE) of a superlattice of Mott insulator metal interfaces (MIMIs) made of nanoscale superconducting layers of quantum confined-space charge in the Mott insulator La2CuO4 (LCO), with thickness L intercalated by normal metal La1.55Sr0.45CuO4 (LSCO) with period d. The critical temperature shows the superconducting dome with Tc as a function of the geometrical parameter L/d showing the maximum at the magic ratio L/d = 2/3 where the Fano-Feshbach resonance enhances the superconducting critical temperature. The normal state transport data of the samples at the top of the superconducting dome exhibit Planckian T-linear resistivity. For L/d > 2/3 and L/d < 2/3, the heterostructures show a resistance following Kondo universal scaling predicted by the numerical renormalization group theory for MIMI nanoscale heterostructures. We show that the Kondo temperature, T-K, and the Kondo scattering amplitude, R-0K, vanish at L/d = 2/3, while T-K and R-0K increase at both sides of the superconducting dome, indicating that the T-linear resistance regime competes with the Kondo proximity effect in the normal phase of MIMIs.
Kondo Versus Fano in Superconducting Artificial High-Tc Heterostructures
Campi G.
Primo
;Valletta A.;
2024
Abstract
Recently, the quest for high-Tc superconductors has evolved from the trial-and-error methodology to the growth of nanostructured artificial high-Tc superlattices (AHTSs) with tailor-made superconducting functional properties by quantum design. Here, we report the growth by molecular beam epitaxy (MBE) of a superlattice of Mott insulator metal interfaces (MIMIs) made of nanoscale superconducting layers of quantum confined-space charge in the Mott insulator La2CuO4 (LCO), with thickness L intercalated by normal metal La1.55Sr0.45CuO4 (LSCO) with period d. The critical temperature shows the superconducting dome with Tc as a function of the geometrical parameter L/d showing the maximum at the magic ratio L/d = 2/3 where the Fano-Feshbach resonance enhances the superconducting critical temperature. The normal state transport data of the samples at the top of the superconducting dome exhibit Planckian T-linear resistivity. For L/d > 2/3 and L/d < 2/3, the heterostructures show a resistance following Kondo universal scaling predicted by the numerical renormalization group theory for MIMI nanoscale heterostructures. We show that the Kondo temperature, T-K, and the Kondo scattering amplitude, R-0K, vanish at L/d = 2/3, while T-K and R-0K increase at both sides of the superconducting dome, indicating that the T-linear resistance regime competes with the Kondo proximity effect in the normal phase of MIMIs.File | Dimensione | Formato | |
---|---|---|---|
2024_CondMat_Kondo Versus Fano in Superconducting Artificial.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.11 MB
Formato
Adobe PDF
|
2.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.