Liquid-phase exfoliation is the most suitable platform for large-scale production of two-dimensional materials. One of the main open challenges is related to the quest of green and bioderived solvents to replace state-of-the-art dispersion media, which suffer several toxicity issues. Here, we demonstrate the suitability of methyl-5-(dimethylamino)-2-methyl-5-oxopentanoate (Rhodiasolv Polarclean) for sonication-assisted liquid-phase exfoliation of layered materials for the case-study examples of WS2, MoS2, and graphene. We performed a direct comparison, in the same processing conditions, with liquid-phase exfoliation using N-methyl-2-pyrrolidone (NMP) solvent. The amount of few-layer flakes (with thickness <5 nm) obtained with Polarclean is increased by μ350% with respect to the case of liquid-phase exfoliation using NMP, maintaining comparable values of the average lateral size, which even reaches μ10 μm for the case of graphene produced by exfoliation in Polarclean, and of the yield (μ40%). Correspondingly, the density of defects is reduced by 1 order of magnitude by Polarclean-assisted exfoliation, as evidenced by the I(D)/I(G) ratio in Raman spectra of graphene as low as 0.07 ± 0.01. Considering the various advantages of Polarclean over state-of-the-art solvents, including the absence of toxicity and its biodegradability, the validation of superior performances of Polarclean in liquid-phase exfoliation paves the way for sustainable large-scale production of nanosheets of layered materials and for extending their use in application fields to date inhibited by toxicity of solvents (e.g., agri-food industry and desalination), with a subsequent superb impact on the commercial potential of their technological applications.

Sustainable Liquid-Phase Exfoliation of Layered Materials with Nontoxic Polarclean Solvent

Mio A. M.;Nicotra G.;
2020

Abstract

Liquid-phase exfoliation is the most suitable platform for large-scale production of two-dimensional materials. One of the main open challenges is related to the quest of green and bioderived solvents to replace state-of-the-art dispersion media, which suffer several toxicity issues. Here, we demonstrate the suitability of methyl-5-(dimethylamino)-2-methyl-5-oxopentanoate (Rhodiasolv Polarclean) for sonication-assisted liquid-phase exfoliation of layered materials for the case-study examples of WS2, MoS2, and graphene. We performed a direct comparison, in the same processing conditions, with liquid-phase exfoliation using N-methyl-2-pyrrolidone (NMP) solvent. The amount of few-layer flakes (with thickness <5 nm) obtained with Polarclean is increased by μ350% with respect to the case of liquid-phase exfoliation using NMP, maintaining comparable values of the average lateral size, which even reaches μ10 μm for the case of graphene produced by exfoliation in Polarclean, and of the yield (μ40%). Correspondingly, the density of defects is reduced by 1 order of magnitude by Polarclean-assisted exfoliation, as evidenced by the I(D)/I(G) ratio in Raman spectra of graphene as low as 0.07 ± 0.01. Considering the various advantages of Polarclean over state-of-the-art solvents, including the absence of toxicity and its biodegradability, the validation of superior performances of Polarclean in liquid-phase exfoliation paves the way for sustainable large-scale production of nanosheets of layered materials and for extending their use in application fields to date inhibited by toxicity of solvents (e.g., agri-food industry and desalination), with a subsequent superb impact on the commercial potential of their technological applications.
2020
Istituto per la Microelettronica e Microsistemi - IMM
green chemistry
layered materials
liquid-phase exfoliation
Polarclean
File in questo prodotto:
File Dimensione Formato  
paolucci-et-al-2020-sustainable-liquid-phase-exfoliation-of-layered-materials-with-nontoxic-polarclean-solvent.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.35 MB
Formato Adobe PDF
4.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/524801
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 58
social impact