: The creation of ordered structures of molecules assembled from solution onto a substrate is a fundamental technological necessity across various disciplines, spanning from crystallography to organic electronics. However, achieving macroscopic order poses significant challenges, since the process of deposition is inherently impacted by factors like solvent evaporation and dewetting flows, which hinder the formation of well-organized structures. Traditional methods like drop casting or spin coating encounter limitations due to the rapid kinetics of solvent evaporation, leading to limited control over final uniformity and order. In response to these challenges, Solvent Vapour Annealing (SVA) has emerged as a promising solution for realizing ordered molecular structures at scales ranging from nano- to milli- meters. SVA decouples the self-assembly stage from the deposition stage by utilizing solvent vapours which can enable rearrangement, movement, and diffusion of large molecules on the surface even on a macroscopic scale. Essentially acting as "molecular lubricants," solvent vapours enable the formation of well-ordered molecular films. This review discusses the advancements, obstacles, and promising strategies associated with utilizing SVA for the development of innovative nanostructured thin films, and emphasizes the originality and effectiveness of molecular assembly on substrates achieved through this approach.

Molecules as Lubricants at the Nanoscale:Tunable Growth of Organic Structures from Nano- to Millimeter-Scale Using Solvent Vapour Annealing

Benekou V.;Candini A.;Liscio A.;Palermo V.
2024

Abstract

: The creation of ordered structures of molecules assembled from solution onto a substrate is a fundamental technological necessity across various disciplines, spanning from crystallography to organic electronics. However, achieving macroscopic order poses significant challenges, since the process of deposition is inherently impacted by factors like solvent evaporation and dewetting flows, which hinder the formation of well-organized structures. Traditional methods like drop casting or spin coating encounter limitations due to the rapid kinetics of solvent evaporation, leading to limited control over final uniformity and order. In response to these challenges, Solvent Vapour Annealing (SVA) has emerged as a promising solution for realizing ordered molecular structures at scales ranging from nano- to milli- meters. SVA decouples the self-assembly stage from the deposition stage by utilizing solvent vapours which can enable rearrangement, movement, and diffusion of large molecules on the surface even on a macroscopic scale. Essentially acting as "molecular lubricants," solvent vapours enable the formation of well-ordered molecular films. This review discusses the advancements, obstacles, and promising strategies associated with utilizing SVA for the development of innovative nanostructured thin films, and emphasizes the originality and effectiveness of molecular assembly on substrates achieved through this approach.
2024
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
Nanofluidics
Organic electronics
Solution processing
Supramolecular chemistry
Thin solid films
File in questo prodotto:
File Dimensione Formato  
benekou e202400133 - review SVA.pdf

accesso aperto

Licenza: Creative commons
Dimensione 3.94 MB
Formato Adobe PDF
3.94 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/524856
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact