A necessary and sufficient condition for fractional Orlicz–Sobolev spaces to be continuously embedded into L∞(Rn) is exhibited. Under the same assumption, any function from the relevant fractional-order spaces is shown to be continuous. Improvements of this result are also offered. They provide the optimal Orlicz target space, and the optimal rearrangement-invariant target space in the embedding in question. These results complement those already available in the subcritical case, where the embedding into L∞(Rn) fails. They also augment a classical embedding theorem for standard fractional Sobolev spaces.

Boundedness of functions in fractional Orlicz–Sobolev spaces

Alberico A.;
2023

Abstract

A necessary and sufficient condition for fractional Orlicz–Sobolev spaces to be continuously embedded into L∞(Rn) is exhibited. Under the same assumption, any function from the relevant fractional-order spaces is shown to be continuous. Improvements of this result are also offered. They provide the optimal Orlicz target space, and the optimal rearrangement-invariant target space in the embedding in question. These results complement those already available in the subcritical case, where the embedding into L∞(Rn) fails. They also augment a classical embedding theorem for standard fractional Sobolev spaces.
2023
Istituto per le applicazioni del calcolo "Mauro Picone" - IAC - Sede Secondaria Napoli
Boundedness of functions
Fractional Orlicz–Sobolev spaces
Orlicz spaces
Orlicz–Lorentz spaces
Rearrangement-invariant spaces
Smooth approximation
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0362546X23000238-main.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 801.99 kB
Formato Adobe PDF
801.99 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/524944
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact